Riemann–Roch theorem (original) (raw)
- Der Satz von Riemann-Roch (nach dem Mathematiker Bernhard Riemann und seinem Schüler Gustav Roch) ist eine zentrale Aussage der Theorie kompakter riemannscher Flächen. Er gibt an, wie viele linear unabhängige meromorphe Funktionen mit vorgegebenen Null- und Polstellen auf einer kompakten riemannschen Fläche existieren. Der Satz wurde später auf algebraische Kurven ausgedehnt, noch weiter verallgemeinert und wird auch in der aktuellen Forschung noch weiterentwickelt. (de)
- En mathématiques, le théorème de Riemann-Roch est un résultat de géométrie algébrique. (fr)
- The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings. Initially proved as Riemann's inequality by , the theorem reached its definitive form for Riemann surfaces after work of Riemann's short-lived student Gustav Roch. It was later generalized to algebraic curves, to higher-dimensional varieties and beyond. (en)
- In de complexe analyse en de algebraïsche meetkunde, deelgebieden van de wiskunde, is de stelling van Riemann-Roch een belangrijk instrument voor de berekening van de dimensie van de ruimte van meromorfe functies met voorgeschreven nullen en toegestane polen. De stelling van Riemann-Roch relateert de complexe analyse van een aangesloten compact Riemann-oppervlak aan het pure topologische genus, g, van het oppervlak, op een manier die overgebracht kan worden naar zuiver algebraïsche omgevingen. Aanvankelijk bewezen als de ongelijkheid van Riemann kreeg de stelling in de jaren 1850 haar definitieve vorm voor Riemann-oppervlakken na het werk van Bernhard Riemanns jonggestorven student Gustav Roch. Later werd de stelling veralgemeend voor algebraïsche krommen en hoger-dimensionale algebraïsche variëteiten. (nl)
- リーマン・ロッホの定理(リーマン・ロッホのていり、英: Riemann–Roch theorem)とは、複素解析学や代数幾何学などで用いられる、閉リーマン面上の複素解析と曲面の種数とを結びつける定理である。特定の位数の零点と極をもつ有理型関数空間の次元計算に役立つ。 まず、ベルンハルト・リーマンがでリーマンの不等式(Riemann's inequality)を証明した。そして短い間ではあったが、リーマンの学生であったグスタフ・ロッホが、で決定的な形に到達した。その後、この定理は代数曲線上や高次元代数多様体に一般化され、さらにそれを超えた一般化もなされている。 (ja)
- 대수기하학에서 리만-로흐 정리(Riemann-Roch 定理, 영어: Riemann–Roch theorem)는 콤팩트 리만 곡면에 주어진 꼴의 특이점을 갖는 일차 독립 유리형 함수들의 개수에 대한 정리다. (ko)
- Теорема Римана — Роха связывает комплексный анализ связных компактных римановых поверхностей с чисто топологическим родом поверхности g, используя методы, которые могут быть распространены на чисто алгебраические ситуации. Первоначально доказанная Риманом как неравенство Римана, теорема получила свой окончательный вид для римановых поверхностей после работы рано умершего студента Римана Густава Роха.Позднее теорема была обобщена на алгебраические кривые и на многообразия. (ru)
- 黎曼–罗赫定理(Riemann–Roch theorem)是数学中的一个重要工具,在复分析和代数几何中的应用尤为广泛。利用该定理,可计算具有指定零点与极点的亚纯函数空间的维数。它将具有纯拓扑亏格 g 的连通紧黎曼曲面上的复分析以某种方式可转换为纯代数设置。 此定理最初是黎曼不等式,对黎曼曲面的确定形式由黎曼早逝的学生于1850年代证明。随后推广到,高维代数簇,等等。 (zh)
- Теорема Рімана — Роха — твердження в комплексному аналізі, що визначає розмірність векторного простору мероморфних функцій ріманової поверхні з нулями і полюсами визначених порядків в заданих точках поверхні. Названа на честь німецьких математиків Бернхарда Рімана і Ґустава Роха. (uk)
- http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf
- http://digreg.mathguide.de/cgi-bin/ssgfi/anzeige.pl%3Fdb=reg&ci=MathZ&id=ART&sd=y1931v33p%3F&nr=076522&ew=SSGFI%7Czbl=0001.05401%7Cdoi=10.1007/BF01174341%7Cs2cid=186228993
- http://resolver.sub.uni-goettingen.de/purl%3FPPN243919689_0054%7Cdoi=10.1515/crll.1857.54.115%7Chdl=2027/coo.31924060183864%7Cs2cid=16593204%7Chdl-access=free
- http://www.math.ucdavis.edu/%7Ekapovich/RS/RiemannRoch.pdf
- http://www.math.ucdavis.edu/~kapovich/
- https://web.archive.org/web/20171222052731/http:/digreg.mathguide.de/cgi-bin/ssgfi/anzeige.pl%3Fdb=reg&ci=MathZ&id=ART&sd=y1931v33p%3F&nr=076522&ew=SSGFI%7Carchive-date=2017-12-22%7Curl-status=dead
- http://www.emis.de/journals/DMJDMV/xvol-icm/19/Gray.MAN.ps.gz
- https://mathoverflow.net/q/55471
- http://resolver.sub.uni-goettingen.de/purl%3FPPN243919689_0064%7Cdoi=10.1515/crll.1865.64.372%7Cs2cid=120178388
- 247261 (xsd:integer)
- 32981 (xsd:nonNegativeInteger)
- 1123231156 (xsd:integer)
- dbr:Multiplicity_(mathematics)
- dbr:Meromorphic_function
- dbr:Non-singular
- dbr:Bernhard_Riemann
- dbr:Algebraic_topology
- dbr:Algebraically_closed_field
- dbr:Arakelov_theory
- dbr:Holomorphic_function
- dbr:Betti_number
- dbr:Riemann_surface
- dbr:Characteristic_class
- dbr:Kähler_differential
- dbr:John_Wiley_&_Sons
- dbr:Compact_space
- dbr:Complex_analysis
- dbr:Mathematics
- dbr:Mathematische_Zeitschrift
- dbr:Max_Noether
- dbr:Elliptic_function
- dbr:Genus_(mathematics)
- dbr:Entire_function
- dbr:Friedrich_Hirzebruch
- dbr:Friedrich_Karl_Schmidt
- dbr:GAGA
- dbr:Geometric_genus
- dbr:Arithmetic_genus
- dbc:Topological_methods_of_algebraic_geometry
- dbc:Bernhard_Riemann
- dbr:Liouville's_theorem_(complex_analysis)
- dbr:Clifford's_theorem_on_special_divisors
- dbr:Complete_variety
- dbr:Pole_(complex_analysis)
- dbr:MathOverflow
- dbr:Adele_ring
- dbr:Torus
- dbr:Lattice_(group)
- dbr:Line_bundle
- dbr:Riemann–Hurwitz_formula
- dbr:Alexander_Grothendieck
- dbr:Algebraic_Geometry_(book)
- dbr:Algebraic_curve
- dbr:Algebraic_geometry
- dbr:Algebraic_geometry_and_analytic_geometry
- dbr:Algebraic_variety
- dbr:Brill–Noether_theory
- dbr:Dimension_(vector_space)
- dbr:Global_field
- dbr:Gorenstein_ring
- dbr:Handle_decomposition
- dbr:Hirzebruch–Riemann–Roch_theorem
- dbr:Italian_school_of_algebraic_geometry
- dbr:Kawasaki's_Riemann–Roch_formula
- dbr:Projective_variety
- dbr:Rational_function
- dbr:Regular_function
- dbr:Gustav_Roch
- dbr:Hilbert_scheme
- dbr:Atiyah–Singer_index_theorem
- dbr:Jean-Pierre_Serre
- dbr:Hyperelliptic_curve
- dbr:Riemann_sphere
- dbr:Armand_Borel
- dbc:Theorems_in_algebraic_geometry
- dbc:Geometry_of_divisors
- dbc:Theorems_in_complex_analysis
- dbr:Accumulation_point
- dbr:Characteristic_(algebra)
- dbr:Coherent_sheaf
- dbr:Hodge_theory
- dbr:Homeomorphism
- dbr:Moduli_of_algebraic_curves
- dbr:Divisor_(algebraic_geometry)
- dbr:Artinian_ring
- dbr:Manifold
- dbr:Poisson_summation_formula
- dbr:Classification_theorem
- dbr:Free_abelian_group
- dbr:Grothendieck–Riemann–Roch_theorem
- dbr:Idele
- dbr:Kunihiko_Kodaira
- dbr:One-form
- dbr:Canonical_bundle
- dbr:Peter_Roquette
- dbr:Singular_homology
- dbr:Skyscraper_sheaf
- dbr:Up_to
- dbr:Euler_characteristic
- dbr:Weierstrass_point
- dbr:Rational_curve
- dbr:Sheaf_cohomology
- dbr:Serre_duality
- dbr:Perfect_field
- dbr:Residue_field
- dbr:Topological_space
- dbr:Riemann–Roch_theorem_for_surfaces
- dbr:Riemann–Roch-type_theorem
- dbr:Canonical_divisor
- dbr:Linearly_equivalent
- dbr:Transition_map
- dbr:Simply_connected
- dbr:Springer-Verlag
- dbr:Vanishing_theorem_(disambiguation)
- dbr:Arithmetic_Riemann–Roch_theorem
- dbr:Cartier_divisor
- dbr:Partial_fraction
- dbr:1-form
- dbr:Compact_topological_space
- dbr:Complex_projective_line
- dbr:Hilbert_polynomial
- dbr:Holomorphic_line_bundle
- dbr:File:Torus_cycles2.svg
- dbr:Principal_divisor
- dbr:File:Triple_torus_illustration.png
- dbr:Point_bundle
- Gustav Roch (en)
- Algebraic geometry and complex analysis (en)
- Gustav (en)
- 1865 (xsd:integer)
- dbr:Hirzebruch–Riemann–Roch_theorem
- dbr:Atiyah–Singer_index_theorem
- dbr:Grothendieck–Riemann–Roch_theorem
- dbr:Riemann–Roch_theorem_for_surfaces
- dbr:Riemann–Roch-type_theorem
- p/r081980 (en)
- Roch (en)
- Riemann–Roch theorem (en)
- Riemann–Roch theorem (en)
- dbt:Springer
- dbt:Infobox_mathematical_statement
- dbt:Citation
- dbt:Cite_book
- dbt:Cite_journal
- dbt:Harvtxt
- dbt:Reflist
- dbt:See_also
- dbt:Short_description
- dbt:Harvs
- dbt:Bernhard_Riemann
- dbt:Algebraic_curves_navbox
- 1865 (xsd:integer)
- dbc:Topological_methods_of_algebraic_geometry
- dbc:Bernhard_Riemann
- dbc:Theorems_in_algebraic_geometry
- dbc:Geometry_of_divisors
- dbc:Theorems_in_complex_analysis
- owl:Thing
- yago:WikicatMathematicalTheorems
- yago:WikicatTheoremsInAlgebra
- yago:WikicatTheoremsInAlgebraicGeometry
- yago:WikicatTheoremsInComplexAnalysis
- yago:WikicatTheoremsInGeometry
- yago:WikicatTopologicalMethodsOfAlgebraicGeometry
- yago:Ability105616246
- yago:Abstraction100002137
- yago:Cognition100023271
- yago:Communication100033020
- yago:Know-how105616786
- yago:Message106598915
- yago:Method105660268
- yago:Proposition106750804
- yago:PsychologicalFeature100023100
- yago:Statement106722453
- yago:Theorem106752293
- Der Satz von Riemann-Roch (nach dem Mathematiker Bernhard Riemann und seinem Schüler Gustav Roch) ist eine zentrale Aussage der Theorie kompakter riemannscher Flächen. Er gibt an, wie viele linear unabhängige meromorphe Funktionen mit vorgegebenen Null- und Polstellen auf einer kompakten riemannschen Fläche existieren. Der Satz wurde später auf algebraische Kurven ausgedehnt, noch weiter verallgemeinert und wird auch in der aktuellen Forschung noch weiterentwickelt. (de)
- En mathématiques, le théorème de Riemann-Roch est un résultat de géométrie algébrique. (fr)
- リーマン・ロッホの定理(リーマン・ロッホのていり、英: Riemann–Roch theorem)とは、複素解析学や代数幾何学などで用いられる、閉リーマン面上の複素解析と曲面の種数とを結びつける定理である。特定の位数の零点と極をもつ有理型関数空間の次元計算に役立つ。 まず、ベルンハルト・リーマンがでリーマンの不等式(Riemann's inequality)を証明した。そして短い間ではあったが、リーマンの学生であったグスタフ・ロッホが、で決定的な形に到達した。その後、この定理は代数曲線上や高次元代数多様体に一般化され、さらにそれを超えた一般化もなされている。 (ja)
- 대수기하학에서 리만-로흐 정리(Riemann-Roch 定理, 영어: Riemann–Roch theorem)는 콤팩트 리만 곡면에 주어진 꼴의 특이점을 갖는 일차 독립 유리형 함수들의 개수에 대한 정리다. (ko)
- Теорема Римана — Роха связывает комплексный анализ связных компактных римановых поверхностей с чисто топологическим родом поверхности g, используя методы, которые могут быть распространены на чисто алгебраические ситуации. Первоначально доказанная Риманом как неравенство Римана, теорема получила свой окончательный вид для римановых поверхностей после работы рано умершего студента Римана Густава Роха.Позднее теорема была обобщена на алгебраические кривые и на многообразия. (ru)
- 黎曼–罗赫定理(Riemann–Roch theorem)是数学中的一个重要工具,在复分析和代数几何中的应用尤为广泛。利用该定理,可计算具有指定零点与极点的亚纯函数空间的维数。它将具有纯拓扑亏格 g 的连通紧黎曼曲面上的复分析以某种方式可转换为纯代数设置。 此定理最初是黎曼不等式,对黎曼曲面的确定形式由黎曼早逝的学生于1850年代证明。随后推广到,高维代数簇,等等。 (zh)
- Теорема Рімана — Роха — твердження в комплексному аналізі, що визначає розмірність векторного простору мероморфних функцій ріманової поверхні з нулями і полюсами визначених порядків в заданих точках поверхні. Названа на честь німецьких математиків Бернхарда Рімана і Ґустава Роха. (uk)
- The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings. (en)
- In de complexe analyse en de algebraïsche meetkunde, deelgebieden van de wiskunde, is de stelling van Riemann-Roch een belangrijk instrument voor de berekening van de dimensie van de ruimte van meromorfe functies met voorgeschreven nullen en toegestane polen. De stelling van Riemann-Roch relateert de complexe analyse van een aangesloten compact Riemann-oppervlak aan het pure topologische genus, g, van het oppervlak, op een manier die overgebracht kan worden naar zuiver algebraïsche omgevingen. (nl)
- Satz von Riemann-Roch (de)
- Théorème de Riemann-Roch (fr)
- 리만-로흐 정리 (ko)
- リーマン・ロッホの定理 (ja)
- Stelling van Riemann-Roch (nl)
- Riemann–Roch theorem (en)
- Теорема Римана — Роха (ru)
- Теорема Рімана — Роха (uk)
- 黎曼-罗赫定理 (zh)
- freebase:Riemann–Roch theorem
- wikidata:Riemann–Roch theorem
- dbpedia-de:Riemann–Roch theorem
- dbpedia-fi:Riemann–Roch theorem
- dbpedia-fr:Riemann–Roch theorem
- dbpedia-he:Riemann–Roch theorem
- dbpedia-ja:Riemann–Roch theorem
- dbpedia-ko:Riemann–Roch theorem
- dbpedia-nl:Riemann–Roch theorem
- dbpedia-ru:Riemann–Roch theorem
- dbpedia-uk:Riemann–Roch theorem
- dbpedia-zh:Riemann–Roch theorem
- https://global.dbpedia.org/id/3WGbw
- wiki-commons:Special:FilePath/Torus_cycles2.svg
- wiki-commons:Special:FilePath/Triple_torus_illustration.png
is dbo:knownFor of
is dbo:wikiPageRedirects of
- dbr:Riemann-Roch_formula
- dbr:Riemann's_inequality
- dbr:Riemann-Roch_theorem
- dbr:Riemann-Roch_theorem_for_algebraic_curves
- dbr:Riemann–Roch_theorem_for_algebraic_curves
- dbr:Index_of_speciality
- dbr:Riemann-Roch
- dbr:Riemann-Roch_Theorem
- dbr:Riemann-Roch_problem
- dbr:Riemann-Roch_theorem_for_Riemann_surfaces
- dbr:Riemann-Roch_theorem_for_curves
- dbr:Riemann_Roch
- dbr:Riemann_Roch_for_curves
- dbr:Riemann_Roch_theorem
- dbr:Riemann_roch
- dbr:Riemann–Roch_formula
- dbr:Riemann–Roch_theorem_for_Riemann_surfaces
- dbr:Riemann–Roch_theorem_for_curves
is dbo:wikiPageWikiLink of
- dbr:Robert_M._Solovay
- dbr:List_of_algebraic_geometry_topics
- dbr:List_of_complex_analysis_topics
- dbr:List_of_curves_topics
- dbr:Representation_theory
- dbr:Bernhard_Riemann
- dbr:Algebraic_K-theory
- dbr:Peter_Hilton
- dbr:Richard_Dedekind
- dbr:Riemann-Roch_formula
- dbr:Riemann_surface
- dbr:Cusp_form
- dbr:Deformation_(mathematics)
- dbr:Kähler_differential
- dbr:List_of_important_publications_in_mathematics
- dbr:Zeros_and_poles
- dbr:Complex_analysis
- dbr:Chern–Gauss–Bonnet_theorem
- dbr:Genus_(mathematics)
- dbr:Georg_Landsberg
- dbr:Ehrhart_polynomial
- dbr:Friedrich_Hirzebruch
- dbr:Friedrich_Karl_Schmidt
- dbr:Gauss–Bonnet_theorem
- dbr:Geometric_genus
- dbr:Goppa_code
- dbr:Modular_form
- dbr:Convexity_(algebraic_geometry)
- dbr:Lagrangian_(field_theory)
- dbr:André_Weil
- dbr:Lesley_Sibner
- dbr:Chip-firing_game
- dbr:Henri_Gillet
- dbr:Mathai–Quillen_formalism
- dbr:Adele_ring
- dbr:Adjunction_formula
- dbr:Linear_system_of_divisors
- dbr:Alexander_Grothendieck
- dbr:Ample_line_bundle
- dbr:Basic_Number_Theory
- dbr:Brill–Noether_theory
- dbr:Hirzebruch–Riemann–Roch_theorem
- dbr:Italian_school_of_algebraic_geometry
- dbr:Projective_variety
- dbr:Ring_(mathematics)
- dbr:Gustav_Roch
- dbr:Harold_Edwards_(mathematician)
- dbr:Heinrich_Martin_Weber
- dbr:Atiyah–Singer_index_theorem
- dbr:J._A._Todd
- dbr:Riemann's_inequality
- dbr:Riemann-Roch_theorem
- dbr:Riemann-Roch_theorem_for_algebraic_curves
- dbr:Riemann–Roch_theorem_for_algebraic_curves
- dbr:Abstract_algebra
- dbr:Chern_class
- dbr:Coherent_sheaf
- dbr:Coherent_sheaf_cohomology
- dbr:Todd_class
- dbr:Tropical_geometry
- dbr:Moduli_of_algebraic_curves
- dbr:Differential_geometry_of_surfaces
- dbr:Divisor_(algebraic_geometry)
- dbr:Artin–Schreier_curve
- dbr:Automorphic_form
- dbr:Martin_Eichler
- dbr:Pierre_Deligne
- dbr:Grothendieck's_relative_point_of_view
- dbr:Grothendieck–Riemann–Roch_theorem
- dbr:Michael_Atiyah
- dbr:Orbifold
- dbr:Canonical_bundle
- dbr:Ramanujan–Petersson_conjecture
- dbr:Raoul_Bott
- dbr:Selberg_trace_formula
- dbr:Séminaire_de_Géométrie_Algébrique_du_Bois_Marie
- dbr:Index_of_speciality
- dbr:List_of_theorems
- dbr:List_of_things_named_after_Bernhard_Riemann
- dbr:Mittag-Leffler's_theorem
- dbr:Weierstrass_point
- dbr:Stacky_curve
- dbr:The_Mathematics_of_Chip-Firing
- dbr:Sheaf_cohomology
- dbr:Serre_duality
- dbr:Riemann–Roch_theorem_for_surfaces
- dbr:Translation_surface
- dbr:Tutte–Grothendieck_invariant
- dbr:Riemann–Hilbert_problem
- dbr:Riemann–Roch-type_theorem
- dbr:Tate_vector_space
- dbr:Varghese_Mathai
- dbr:Riemann-Roch
- dbr:Riemann-Roch_Theorem
- dbr:Riemann-Roch_problem
- dbr:Riemann-Roch_theorem_for_Riemann_surfaces
- dbr:Riemann-Roch_theorem_for_curves
- dbr:Riemann_Roch
- dbr:Riemann_Roch_for_curves
- dbr:Riemann_Roch_theorem
- dbr:Riemann_roch
- dbr:Riemann–Roch_formula
- dbr:Riemann–Roch_theorem_for_Riemann_surfaces
- dbr:Riemann–Roch_theorem_for_curves
is dbp:consequences of
- dbr:Hirzebruch–Riemann–Roch_theorem
- dbr:Grothendieck–Riemann–Roch_theorem
- dbr:Riemann–Roch_theorem_for_surfaces
is dbp:knownFor of
is foaf:primaryTopic of