Uniformization theorem (original) (raw)
En mathématiques, le théorème d'uniformisation de Riemann est un résultat de base dans la théorie des surfaces de Riemann, c'est-à-dire des variétés complexes de dimension 1. Il assure que toute surface de Riemann simplement connexe peut être mise en correspondance biholomorphe avec l'une des trois surfaces suivantes : le plan complexe C, le disque unité de ce plan, ou la sphère de Riemann, c'est-à-dire la droite projective complexe P1(C).
Property | Value |
---|---|
dbo:abstract | En mathématiques, le théorème d'uniformisation de Riemann est un résultat de base dans la théorie des surfaces de Riemann, c'est-à-dire des variétés complexes de dimension 1. Il assure que toute surface de Riemann simplement connexe peut être mise en correspondance biholomorphe avec l'une des trois surfaces suivantes : le plan complexe C, le disque unité de ce plan, ou la sphère de Riemann, c'est-à-dire la droite projective complexe P1(C). (fr) Il teorema di uniformizzazione di Riemann è un importante teorema di analisi complessa, dimostrato dal matematico Bernhard Riemann. Il teorema descrive un forte collegamento fra l'analisi complessa e la geometria differenziale per le superfici. (it) 一意化定理(uniformization theorem)とは、すべての単連結リーマン面は、開円板、複素平面、リーマン球面の 3つのうちのひとつに共形同値であるという定理である。特に、単連結リーマン面は(constant curvature)のリーマン計量を持つ。この定理は普遍被覆リーマン面を楕円型(正の曲率、正の曲がった曲率をもつ)、放物型(平坦)、双曲型(負曲率)として分類する。 一意化定理はリーマンの写像定理の平面の固有な単連結開部分集合から、任意の単連結はリーマン面への一般化である。 一意化定理は、任意の連結である第二可算の面の同様な結果、定数曲率のリーマン計量を与えることができることを意味している。 (ja) In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces. Since every Riemann surface has a universal cover which is a simply connected Riemann surface, the uniformization theorem leads to a classification of Riemann surfaces into three types: those that have the Riemann sphere as universal cover ("elliptic"), those with the plane as universal cover ("parabolic") and those with the unit disk as universal cover ("hyperbolic"). It further follows that every Riemann surface admits a Riemannian metric of constant curvature, where the curvature can be taken to be 1 in the elliptic, 0 in the parabolic and -1 in the hyperbolic case. The uniformization theorem also yields a similar classification of closed orientable Riemannian 2-manifolds into elliptic/parabolic/hyperbolic cases. Each such manifold has a conformally equivalent Riemannian metric with constant curvature, where the curvature can be taken to be 1 in the elliptic, 0 in the parabolic and -1 in the hyperbolic case. (en) 복소해석학에서 균일화 정리(均一化定理, uniformization theorem)는 단일 연결 리만 곡면이 열린 단위 원판이나 복소평면, 리만 구 가운데 하나로 전단사 등각 사상이 존재한다는 정리다. (ko) Теорема об униформизации — обобщение теоремы Римана об отображении на двумерные римановы многообразия. Можно сказать, что теорема даёт наилучшую метрику в данном конформном классе. (ru) In de riemann-meetkunde, een deelgebied van de wiskunde, zegt de uniformeringsstelling dat elk enkelvoudig samenhangende riemann-oppervlak hoekgetrouw equivalent is aan een van de drie domeinen: de open eenheidsschijf, het complexe vlak of de riemann-sfeer. In het bijzonder staat het een riemann-metriek met constante kromming toe. Dit classificeert riemann-oppervlakken als elliptisch (positief gekromd - of beter een constante positieve metriek toelatend), parabolisch (vlak) of hyperbolisch (negatief gekromd) op basis van hun universele overdekking. De uniformeringsstelling is een veralgemening van de afbeeldingstelling van Riemann voor enkelvoudig samenhangende open deelverzamelingen van het vlak naar willekeurige enkelvoudig samenhangende riemann-oppervlakken. De uniformeringsstelling impliceert een soortgelijk resultaat voor willekeurig samenhangende tweedst-aftelbare oppervlakken: men kan zij uitrusten met een riemann-metriek met constante kromming. (nl) Теорема про уніформізацію — узагальнення теореми Рімана про відображення на двовимірні ріманові многовиди. Можна сказати, що теорема дає найкращу метрику в даному конформному класі. (uk) 数学上,曲面的单值化定理是说任何曲面上都有一个常高斯曲率的度量。事实上,在每一个给定的中我们都可以找到一个常高斯曲率的度量。等价的說,用复分析的语言,任何单连通的黎曼曲面都共形等价於复平面、单位圆盘和黎曼球面三者之一。 (zh) |
dbo:thumbnail | wiki-commons:Special:FilePath/Orange_Genus_3_Surface.png?width=300 |
dbo:wikiPageExternalLink | http://gdz.sub.uni-goettingen.de/pdfcache/PPN252457811_1909/PPN252457811_1909___LOG_0042.pdf http://www.math.stonybrook.edu/~bishop/classes/math401.F09/GrayRMT.pdf https://www.flickr.com/photos/sbprzd/362529354 http://gdz.sub.uni-goettingen.de/pdfcache/PPN252457811_1910/PPN252457811_1910___LOG_0008.pdf http://www.numdam.org/item%3Fid=ASENS_1981_4_14_3_249_0 https://archive.org/details/primeronriemanns0000bear https://www.biodiversitylibrary.org/item/34472%23page/280/mode/1up http://perso.ens-lyon.fr/ghys/articles/Uniformisationsurfaces.pdf http://www.ems-ph.org/books/book.php%3Fproj_nr=198%7Cpublisher=European https://books.google.com/books%3Fid=QvlhqAGN_y4C http://www.numdam.org/item%3Fid=BSMF_1883__11__112_1 http://resolver.sub.uni-goettingen.de/purl%3FGDZPPN00250118X http://resolver.sub.uni-goettingen.de/purl%3FGDZPPN002501198 http://resolver.sub.uni-goettingen.de/purl%3FGDZPPN002501473 https://zenodo.org/record/2161412 |
dbo:wikiPageID | 288270 (xsd:integer) |
dbo:wikiPageLength | 29357 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1066573590 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Beltrami_equation dbr:Schwarz_alternating_method dbr:David_Hilbert dbr:Hodge_star_operator dbr:Paul_Koebe dbr:Ricci_flow dbr:Richard_S._Hamilton dbr:Riemann_surface dbr:Perron_method dbr:Radó's_theorem_(Riemann_surfaces) dbc:Riemann_surfaces dbr:Complex_plane dbr:Mathematische_Zeitschrift dbr:Elliptic_operator dbr:Second-countable_space dbr:Elliptic_curve dbr:Gauss–Bonnet_theorem dbr:Geometrization_conjecture dbr:Green's_function dbr:Conformal_equivalence dbr:Constant_curvature dbr:Liouville's_equation dbr:Lipman_Bers dbr:Sobolev_space dbr:Harmonic dbr:Mathematische_Annalen dbr:Proceedings_of_the_American_Mathematical_Society dbr:Measurable_Riemann_mapping_theorem dbr:Acta_Mathematica dbr:Torus dbr:W._V._D._Hodge dbr:American_Mathematical_Society dbc:Manifolds dbr:Exterior_derivative dbr:Felix_Klein dbr:Nicolas_Bourbaki dbr:Dirichlet's_principle dbr:Dirichlet_problem dbr:Discrete_group dbr:Isometry_group dbr:Israel_Journal_of_Mathematics dbr:Quotient_space_(topology) dbr:Riemannian_manifold dbr:Riemannian_metric dbr:Grigori_Perelman dbr:Group_action_(mathematics) dbr:Harmonic_function dbr:Harmonic_map dbr:Hermann_Weyl dbr:Hilbert_space dbc:Theorems_in_differential_geometry dbr:Isothermal_coordinates dbr:Hyperbolic_space dbr:Riemann_sphere dbr:L._E._J._Brouwer dbr:Laplace–Beltrami_operator dbr:Hodge_theory dbr:Triangulation_(topology) dbr:Sphere dbr:Open_set dbr:Orientable_manifold dbr:Euclidean_plane dbr:Euler_characteristic dbr:Simultaneous_uniformization_theorem dbr:Quasi-Fuchsian_group dbr:Weyl's_lemma_(Laplace_equation) dbr:Subset dbr:Unit_disk dbr:Riemann_mapping_theorem dbr:Poincaré_lemma dbr:Universal_Cover dbr:Simply_connected dbr:Elliptic_regularity dbr:Quasiconformal_map dbr:Teichmüller_theory dbr:P-adic_uniformization_theorem |
dbp:authorlink | Paul Koebe (en) |
dbp:first | Paul (en) N.A. (en) |
dbp:id | U/u095290 (en) |
dbp:last | Gusevskii (en) Koebe (en) |
dbp:title | Uniformization (en) |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Harvtxt dbt:Math dbt:Reflist dbt:See_also dbt:Short_description dbt:Harvs dbt:Eom dbt:Manifolds |
dbp:year | 1907 (xsd:integer) |
dcterms:subject | dbc:Riemann_surfaces dbc:Manifolds dbc:Theorems_in_differential_geometry |
rdf:type | owl:Thing yago:WikicatMathematicalTheorems yago:WikicatTheorems yago:WikicatTheoremsInDifferentialGeometry yago:WikicatTheoremsInGeometry yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | En mathématiques, le théorème d'uniformisation de Riemann est un résultat de base dans la théorie des surfaces de Riemann, c'est-à-dire des variétés complexes de dimension 1. Il assure que toute surface de Riemann simplement connexe peut être mise en correspondance biholomorphe avec l'une des trois surfaces suivantes : le plan complexe C, le disque unité de ce plan, ou la sphère de Riemann, c'est-à-dire la droite projective complexe P1(C). (fr) Il teorema di uniformizzazione di Riemann è un importante teorema di analisi complessa, dimostrato dal matematico Bernhard Riemann. Il teorema descrive un forte collegamento fra l'analisi complessa e la geometria differenziale per le superfici. (it) 一意化定理(uniformization theorem)とは、すべての単連結リーマン面は、開円板、複素平面、リーマン球面の 3つのうちのひとつに共形同値であるという定理である。特に、単連結リーマン面は(constant curvature)のリーマン計量を持つ。この定理は普遍被覆リーマン面を楕円型(正の曲率、正の曲がった曲率をもつ)、放物型(平坦)、双曲型(負曲率)として分類する。 一意化定理はリーマンの写像定理の平面の固有な単連結開部分集合から、任意の単連結はリーマン面への一般化である。 一意化定理は、任意の連結である第二可算の面の同様な結果、定数曲率のリーマン計量を与えることができることを意味している。 (ja) 복소해석학에서 균일화 정리(均一化定理, uniformization theorem)는 단일 연결 리만 곡면이 열린 단위 원판이나 복소평면, 리만 구 가운데 하나로 전단사 등각 사상이 존재한다는 정리다. (ko) Теорема об униформизации — обобщение теоремы Римана об отображении на двумерные римановы многообразия. Можно сказать, что теорема даёт наилучшую метрику в данном конформном классе. (ru) Теорема про уніформізацію — узагальнення теореми Рімана про відображення на двовимірні ріманові многовиди. Можна сказати, що теорема дає найкращу метрику в даному конформному класі. (uk) 数学上,曲面的单值化定理是说任何曲面上都有一个常高斯曲率的度量。事实上,在每一个给定的中我们都可以找到一个常高斯曲率的度量。等价的說,用复分析的语言,任何单连通的黎曼曲面都共形等价於复平面、单位圆盘和黎曼球面三者之一。 (zh) In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces. (en) In de riemann-meetkunde, een deelgebied van de wiskunde, zegt de uniformeringsstelling dat elk enkelvoudig samenhangende riemann-oppervlak hoekgetrouw equivalent is aan een van de drie domeinen: de open eenheidsschijf, het complexe vlak of de riemann-sfeer. In het bijzonder staat het een riemann-metriek met constante kromming toe. Dit classificeert riemann-oppervlakken als elliptisch (positief gekromd - of beter een constante positieve metriek toelatend), parabolisch (vlak) of hyperbolisch (negatief gekromd) op basis van hun universele overdekking. (nl) |
rdfs:label | Théorème d'uniformisation de Riemann (fr) Teorema di uniformizzazione di Riemann (it) 균일화 정리 (ko) 一意化定理 (ja) Uniformeringsstelling (nl) Uniformization theorem (en) Теорема об униформизации (ru) 单值化定理 (zh) Теорема уніформізації (uk) |
rdfs:seeAlso | dbr:Ricci_flow dbr:Geometrization dbr:Planar_Riemann_surface |
owl:sameAs | freebase:Uniformization theorem yago-res:Uniformization theorem wikidata:Uniformization theorem dbpedia-fr:Uniformization theorem dbpedia-it:Uniformization theorem dbpedia-ja:Uniformization theorem dbpedia-ko:Uniformization theorem dbpedia-nl:Uniformization theorem dbpedia-ru:Uniformization theorem dbpedia-uk:Uniformization theorem dbpedia-zh:Uniformization theorem https://global.dbpedia.org/id/zjF4 |
prov:wasDerivedFrom | wikipedia-en:Uniformization_theorem?oldid=1066573590&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Orange_Genus_2_Surface.png wiki-commons:Special:FilePath/Orange_Genus_3_Surface.png wiki-commons:Special:FilePath/Orange_Sphere.png wiki-commons:Special:FilePath/Orange_Torus.png |
foaf:isPrimaryTopicOf | wikipedia-en:Uniformization_theorem |
is dbo:knownFor of | dbr:Paul_Koebe dbr:Henri_Poincaré |
is dbo:wikiPageDisambiguates of | dbr:Uniformization |
is dbo:wikiPageRedirects of | dbr:Uniformisation_Theorem dbr:Uniformisation_theorem |
is dbo:wikiPageWikiLink of | dbr:Beltrami_equation dbr:Schwarz_alternating_method dbr:List_of_differential_geometry_topics dbr:Bernhard_Riemann dbr:Dennis_Sullivan dbr:Paul_Koebe dbr:Ricci_flow dbr:Riemann_surface dbr:Canonical_domain dbr:Mandelbrot_set dbr:Pu's_inequality dbr:Conic_section dbr:Geometric_flow dbr:Geometric_topology dbr:Low-dimensional_topology dbr:Timeline_of_manifolds dbr:Elliptic_curve dbr:Geometrization_conjecture dbr:Möbius_strip dbr:Complex_geometry dbr:Complex_hyperbolic_space dbr:Fuchsian_model dbr:Fundamental_group dbr:Fundamental_polygon dbr:Stability_(algebraic_geometry) dbr:Surface_(topology) dbr:Ailana_Fraser dbr:Topology dbr:K-stability dbr:Linear_group dbr:Liouville_field_theory dbr:3-manifold dbr:Felix_Klein dbr:Kobayashi_metric dbr:Normal_family dbr:Upper_half-plane dbr:Projective_variety dbr:Victor_Puiseux dbr:Grigori_Perelman dbr:Gustav_Elfving dbr:Henri_Poincaré dbr:Hilbert's_problems dbr:Hurwitz's_automorphisms_theorem dbr:Hyperbolic_manifold dbr:Hyperbolic_space dbr:Riemann_sphere dbr:Teichmüller_space dbr:Differential_forms_on_a_Riemann_surface dbr:Differential_geometry_of_surfaces dbr:Manifold dbr:Classification_of_manifolds dbr:Filling_area_conjecture dbr:Kodaira_dimension dbr:Minimal_volume dbr:Shing-Tung_Yau dbr:Uniformization dbr:External_ray dbr:List_of_theorems dbr:Simultaneous_uniformization_theorem dbr:Planar_Riemann_surface dbr:Non-positive_curvature dbr:P-adic_Teichmüller_theory dbr:Small_cubicuboctahedron dbr:Riemann_mapping_theorem dbr:Uniformisation_Theorem dbr:Uniformisation_theorem |
is dbp:knownFor of | dbr:Paul_Koebe dbr:Henri_Poincaré |
is rdfs:seeAlso of | dbr:Differential_geometry_of_surfaces |
is foaf:primaryTopic of | wikipedia-en:Uniformization_theorem |