Engineering and physical sciences in oncology: challenges and opportunities (original) (raw)
Jain, R. K., Martin, J. D. & Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng.16, 321–346 (2014). Comprehensive review of the role of physical forces in tumour progression and therapy for those new to the fields of engineering and physical sciences in oncology. ArticleCASPubMedPubMed Central Google Scholar
Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer11, 512–522 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tse, J. M. et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl Acad. Sci. USA109, 911–916 (2012). ArticlePubMed Google Scholar
Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol.31, 2205–2218 (2013). CASPubMedPubMed Central Google Scholar
Mitchell, M. J. & King, M. R. Computational and experimental models of cancer cell response to fluid shear stress. Frontiers Oncol.3, 44 (2013). Article Google Scholar
Verellen, D. et al. Innovations in image-guided radiotherapy. Nat. Rev. Cancer7, 949–960 (2007). ArticleCASPubMed Google Scholar
Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell6, 553–563 (2004). Seminal study revealing the molecular and physiological mechanisms of vascular normalization, along with how normalization improves the outcome of various therapies. CASPubMed Google Scholar
Wong, C. et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA108, 2426–2431 (2011). ArticlePubMedPubMed Central Google Scholar
Jain, R. K. An indirect way to tame cancer. Scientif. Am.310, 46–53 (2014). Article Google Scholar
Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol.7, 383–388 (2012). First study demonstrating that normalization of leaky, disordered tumour vasculature enhances the delivery of smaller nanoparticle therapeutics to tumours. ArticleCASPubMedPubMed Central Google Scholar
Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol.32, 760–772 (2014). ArticleCASPubMed Google Scholar
Esch, M. B., King, T. L. & Shuler, M. L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng.13, 55–72 (2011). ArticleCASPubMed Google Scholar
Swartz, M. A. & Lund, A. W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat. Rev. Cancer12, 210–219 (2012). ArticleCASPubMed Google Scholar
Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell21, 309–322 (2012). ArticleCASPubMed Google Scholar
Gajewski, T. F., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol.14, 1014–1022 (2013). ArticleCASPubMedPubMed Central Google Scholar
Jain, R. K., Munn, L. L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer2, 266–276 (2002). ArticleCASPubMed Google Scholar
Correia, A. L. & Bissell, M. J. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist. Updat.15, 39–49 (2012). ArticleCASPubMedPubMed Central Google Scholar
Trédan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst.99, 1441–1454 (2007). ArticleCASPubMed Google Scholar
Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater.1, 16014 (2016). ArticleCAS Google Scholar
Matsumura, Y. & Maeda, H. A. New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46, 6387–6392 (1986). CASPubMed Google Scholar
Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res.31, 288–305 (1986). ArticleCASPubMed Google Scholar
Dvorak, H. F., Brown, L. F., Detmar, M. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol.146, 1029–1039 (1995). CASPubMedPubMed Central Google Scholar
Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev.66, 2–25 (2014). ArticleCASPubMed Google Scholar
Koukourakis, M. I. et al. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J. Clin. Oncol.17, 3512–3521 (1999). ArticleCASPubMed Google Scholar
Stylianopoulos, T. & Jain, R. K. Design considerations for nanotherapeutics in oncology. Nanomedicine11, 1893–1907 (2015). ArticleCASPubMed Google Scholar
Jain, R. K. & Baxter, L. T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res.48, 7022–7032 (1988). Seminal paper on the role of elevated IFP as a barrier to drug delivery. CASPubMed Google Scholar
Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res.64, 3731–3736 (2004). ArticleCASPubMed Google Scholar
Batchelor, T. T. et al. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc. Natl Acad. Sci. USA110, 19059–19064 (2013). Clinical evidence that vascular normalization and the resulting increase in perfusion improve survival in cancer patients. ArticleCASPubMedPubMed Central Google Scholar
Heist, R. S. et al. Improved tumor vascularization after anti-VEGF therapy with carboplatin and nab-paclitaxel associates with survival in lung cancer. Proc. Natl Acad. Sci. USA112, 1547–1552 (2015). ArticleCASPubMedPubMed Central Google Scholar
Tolaney, S. M. et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc. Natl Acad. Sci. USA112, 14325–14330 (2015). ArticleCASPubMedPubMed Central Google Scholar
Chauhan, V. P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun.4, 2516 (2013). ArticleCASPubMed Google Scholar
Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA109, 15101–15108 (2012). ArticlePubMedPubMed Central Google Scholar
Incio, J. et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov.6, 852–869 (2016). Study demonstrating the effects of obesity on tumour mechanics, along with potential strategies to overcome these effects using clinically available antifibrotic and inflammatory agents. ArticleCASPubMedPubMed Central Google Scholar
Liu, H. et al. Use of angiotensin system inhibitors is associated with immune activation and longer survival in non-metastatic pancreatic ductal adenocarcinoma. Clin. Cancer Res.http://dx.doi.org/10.1158/1078-0432.CCR-17-0256 (2017).
Murphy, J. E. et al. TGF-B1 inhibition with losartan in combination with FOLFIRINOX (F-NOX) in locally advanced pancreatic cancer (LAPC): preliminary feasibility and R0 resection rates from a prospective phase II study. J. Clin. Oncol.35, 386–386 (2017). Article Google Scholar
Naba, A., Clauser, K. R., Lamar, J. M., Carr, S. A. & Hynes, R. O. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife3, e01308 (2014). ArticlePubMedPubMed Central Google Scholar
Rivron, N. C. et al. Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proc. Natl Acad. Sci. USA109, 6886–6891 (2012). ArticlePubMedPubMed Central Google Scholar
Schrader, J. et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology53, 1192–1205 (2011). ArticleCASPubMed Google Scholar
Youk, J. H. et al. Comparison of strain and shear wave elastography for the differentiation of benign from malignant breast lesions, combined with B-mode ultrasonography: qualitative and quantitative assessments. Ultrasound Med. Biol.40, 2336–2344 (2014). ArticlePubMed Google Scholar
Cheng, G., Tse, J., Jain, R. K. & Munn, L. L. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE4, e4632 (2009). ArticleCASPubMedPubMed Central Google Scholar
Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol.15, 637–646 (2013). ArticleCASPubMed Google Scholar
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell8, 241–254 (2005). Seminal work demonstrating that elevated tissue stiffness promotes malignant behaviour via modulation of integrins. CASPubMed Google Scholar
Wang, K. et al. Stiffening and unfolding of early deposited-fibronectin increase proangiogenic factor secretion by breast cancer-associated stromal cells. Biomaterials54, 63–71 (2015). ArticleCASPubMedPubMed Central Google Scholar
Artym, V. V. et al. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. J. Cell Biol.208, 331–350 (2015). ArticlePubMedPubMed Central Google Scholar
Doyle, A. D., Carvajal, N., Jin, A., Matsumoto, K. & Yamada, K. M. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat. Commun.6, 8720 (2015). ArticleCASPubMed Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). Seminal study demonstrating that stem cells that generate specialized cells within the body take cues from tissue stiffness to specify lineage and commit to phenotypes. ArticleCASPubMed Google Scholar
Bordeleau, F. et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc. Natl Acad. Sci. USA114, 492–497 (2017). ArticleCASPubMed Google Scholar
Ulrich, T. A., De- Juan-Pardo, E. M. & Kumar, S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res.69, 4167–4174 (2009). ArticleCASPubMedPubMed Central Google Scholar
Weigelin, B., Bakker, G.-J. & Friedl, P. Intravital third harmonic generation microscopy of collective melanoma cell invasion. IntraVital1, 32–43 (2012). ArticlePubMed Google Scholar
Blehm, B. H., Jiang, N., Kotobuki, Y. & Tanner, K. Deconstructing the role of the ECM microenvironment on drug efficacy targeting MAPK signaling in a pre-clinical platform for cutaneous melanoma. Biomaterials56, 129–139 (2015). ArticleCASPubMedPubMed Central Google Scholar
Seo, B. R. et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci. Transl Med.7, 301ra130 (2015). Study linking obesity, fibrotic remodelling and ECM mechanics to breast tumorigenesis. ArticleCASPubMedPubMed Central Google Scholar
Fukumura, D., Incio, J., Shankaraiah, R. C. & Jain, R. K. Obesity and cancer: an angiogenic and inflammatory link. Microcirculation23, 191–206 (2016). ArticlePubMedPubMed Central Google Scholar
Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med.22, 497–505 (2016). ArticleCASPubMedPubMed Central Google Scholar
Olive, K. P. et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science324, 1457–1461 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell25, 735–747 (2014). ArticleCASPubMedPubMed Central Google Scholar
Özdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell25, 719–734 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell159, 80–93 (2014). ArticleCASPubMedPubMed Central Google Scholar
Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer15, 540–555 (2015). ArticleCASPubMed Google Scholar
Mitchell, M. J. & King, M. R. Physical Biology in Cancer. 3. The role of cell glycocalyx in vascular transport of circulating tumor cells. Am. J. Physiol., Cell Physiol.306, C89–C97 (2014). ArticleCAS Google Scholar
Weinbaum, S., Tarbell, J. M. & Damiano, E. R. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng.9, 121–167 (2007). ArticleCASPubMed Google Scholar
Hollingsworth, M. A. & Swanson, B. J. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer4, 45–60 (2004). ArticleCASPubMed Google Scholar
Itano, N., Sawai, T., Miyaishi, O. & Kimata, K. Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res.59, 2499–2504 (1999). CASPubMed Google Scholar
Rahbari, N. N. et al. Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci. Transl Med.8, 360ra135 (2016). ArticleCASPubMedPubMed Central Google Scholar
Paszek, M. J. et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature511, 319–325 (2014). First study implicating the bulky glycocalyx of tumour cells as a feature that promotes metastasis via mechanically enhanced cell-surface-receptor function. ArticleCASPubMedPubMed Central Google Scholar
Hudak, J. E., Canham, S. M. & Bertozzi, C. R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nature Chem. Biol.10, 69–75 (2013). ArticleCAS Google Scholar
Läubli, H. et al. Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc. Natl Acad. Sci. USA111, 14211–14216 (2014). ArticleCASPubMedPubMed Central Google Scholar
Xiao, H., Woods, E. C., Vukojicic, P. & Bertozzi, C. R. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc. Natl Acad. Sci. USA113, 10304–10309 (2016). ArticleCASPubMedPubMed Central Google Scholar
Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature263, 797–800 (1976). First demonstration of the use of polymeric materials for controlled, sustained release of high-molecular-weight compounds for >100 days. ArticleCASPubMed Google Scholar
Yatvin, M. B., Weinstein, J. N., Dennis, W. H. & Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science202, 1290–1293 (1978). ArticleCASPubMed Google Scholar
Brownlee, M. & Cerami, A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science206, 1190–1191 (1979). ArticleCASPubMed Google Scholar
Steichen, S. D., Caldorera-Moore, M. & Peppas, N. A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci.48, 416–427 (2013). ArticleCASPubMed Google Scholar
Sampath, P. & Brem, H. Implantable slow-release chemotherapeutic polymers for the treatment of malignant brain tumors. Cancer Control5, 130–137 (1998). ArticleCASPubMed Google Scholar
Okada, H., Doken, Y., Ogawa, Y. & Toguchi, H. Preparation of three-month depot injectable microspheres of leuprorelin acetate using biodegradable polymers. Pharm. Res.11, 1143–1147 (1994). ArticleCASPubMed Google Scholar
Gabizon, A. et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res.54, 987–992 (1994). Seminal report showing prolonged circulation time and enhanced tumour accumulation of polyethylene glycol-coated doxorubicin liposome formulations (Doxil) in patients, compared with free doxorubicin. CASPubMed Google Scholar
Gu, L. & Mooney, D. J. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer16, 56–66 (2016). ArticleCASPubMedPubMed Central Google Scholar
Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature507, 519–522 (2014). Engineering of an amphiphilic cancer vaccine that 'hitchhikes' with serum albumin to traffic efficiently to lymph nodes, enabling substantially increased potency and safety of subunit vaccines. ArticleCASPubMedPubMed Central Google Scholar
Jeanbart, L. et al. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res.2, 436–447 (2014). ArticleCASPubMed Google Scholar
Thomas, S. N., Vokali, E., Lund, A. W., Hubbell, J. A. & Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials35, 814–824 (2014). ArticleCASPubMed Google Scholar
Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature534, 396–401 (2016). Synthesis of a nanoparticle RNA vaccine that targets dendritic cells after systemic administration, leading to an antitumour immune response with antiviral features as well as potential efficacy in patients with advanced melanoma. ArticleCASPubMed Google Scholar
Chahal, J. S. et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl Acad. Sci. USA113, E4133–E4142 (2016). ArticleCASPubMedPubMed Central Google Scholar
Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol.12, 269–281 (2012). ArticleCASPubMedPubMed Central Google Scholar
Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med.16, 1035–1041 (2010). ArticleCASPubMedPubMed Central Google Scholar
Stephan, M. T., Stephan, S. B., Bak, P., Chen, J. & Irvine, D. J. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials33, 5776–5787 (2012). ArticleCASPubMedPubMed Central Google Scholar
Huang, B. et al. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl Med.7, 291ra94 (2015). ArticleCASPubMedPubMed Central Google Scholar
Mitchell, M. J., Wayne, E., Rana, K., Schaffer, C. B. & King, M. R. TRAIL-coated leukocytes that kill cancer cells in the circulation. Proc. Natl Acad. Sci. USA111, 930–935 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wayne, E. C. et al. TRAIL-coated leukocytes that prevent the bloodborne metastasis of prostate cancer. J. Control. Release223, 215–223 (2016). ArticleCASPubMed Google Scholar
Zuckerman, J. E. & Davis, M. E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov.14, 843–856 (2015). ArticleCASPubMed Google Scholar
Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature464, 1067–1070 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet.15, 541–555 (2014). ArticleCASPubMed Google Scholar
Zhu, X. et al. Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proc. Natl Acad. Sci. USA112, 7779–7784 (2015). ArticleCASPubMedPubMed Central Google Scholar
Ren, Y. et al. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci. Transl Med.4, 147ra112 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl Med.5, 209ra152 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol.9, 648–655 (2014). ArticleCASPubMedPubMed Central Google Scholar
Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther.18, 1357–1364 (2010). ArticleCASPubMedPubMed Central Google Scholar
Deng, Z. J. et al. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano7, 9571–9584 (2013). ArticleCASPubMed Google Scholar
Zhao, Y. et al. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun.7, 11822 (2016). ArticlePubMedPubMed Central Google Scholar
Coombes, R. C. Drug testing in the patient: toward personalized cancer treatment. Sci. Transl Med.7, 284ps10 (2015). ArticlePubMed Google Scholar
Jonas, O. et al. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Sci. Transl Med.7, 284ra57 (2015). Development of a minimally invasive microdevice that can be implanted and removed from tumours using a biopsy needle, enabling direct drug sensitivity testing of many compounds within a patient. ArticlePubMedPubMed Central Google Scholar
Klinghoffer, R. A. et al. A technology platform to assess multiple cancer agents simultaneously within a patient's tumor. Sci. Transl Med.7, 284ra58 (2015). ArticlePubMedPubMed Central Google Scholar
Yin, H., Kauffman, K. J. & Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov.16, 387–399 (2017). ArticleCASPubMed Google Scholar
Bao, G., Mitragotri, S. & Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng.15, 253–282 (2013). ArticleCASPubMedPubMed Central Google Scholar
Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med.20, 436–442 (2014). Development of a new technique — multiplex ion beam imaging — which utilizes secondary ion mass spectrometry and antibodies labelled with isotopically pure elemental metals to detect up to 100 tumour antigens within a single sample. ArticleCASPubMedPubMed Central Google Scholar
Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science332, 687–696 (2011). ArticleCASPubMedPubMed Central Google Scholar
Peet, A. C., Arvanitis, T. N., Leach, M. O. & Waldman, A. D. Functional imaging in adult and paediatric brain tumours. Nat. Rev. Clin. Oncol.9, 700–711 (2012). ArticleCASPubMed Google Scholar
Choi, C. et al. 2-Hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med.18, 624–629 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zackrisson, S., van de Ven, S. M. W. Y. & Gambhir, S. S. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res.74, 979–1004 (2014). ArticleCASPubMedPubMed Central Google Scholar
Jokerst, J. V., Cole, A. J., Van de Sompel, D. & Gambhir, S. S. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano6, 10366–10377 (2012). ArticleCASPubMedPubMed Central Google Scholar
la Zerda, de, A. et al. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano6, 4694–4701 (2012). ArticleCAS Google Scholar
Kircher, M. F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med.18, 829–834 (2012). ArticleCASPubMedPubMed Central Google Scholar
Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol.9, 233–239 (2014). ArticleCASPubMedPubMed Central Google Scholar
Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine6, 715–728 (2011). ArticleCASPubMed Google Scholar
Gu, F. et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl Acad. Sci. USA105, 2586–2591 (2008). ArticlePubMedPubMed Central Google Scholar
Ghosh, D. et al. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnology7, 677–682 (2012). ArticleCAS Google Scholar
Weissleder, R., Schwaiger, M. C., Gambhir, S. S. & Hricak, H. Imaging approaches to optimize molecular therapies. Sci. Transl Med.8, 355ps16 (2016). ArticleCASPubMed Google Scholar
Miller, M. A. & Weissleder, R. Imaging the pharmacology of nanomaterials by intravital microscopy: toward understanding their biological behavior. Adv. Drug Deliv. Rev.113, 61–86 (2016). ArticleCASPubMedPubMed Central Google Scholar
Thurber, G. M. et al. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun.4, 1504 (2013). ArticleCASPubMed Google Scholar
Laughney, A. M. et al. Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci. Transl Med.6, 261ra152 (2014). ArticleCASPubMedPubMed Central Google Scholar
Miller, M. A., Askevold, B., Yang, K. S., Kohler, R. H. & Weissleder, R. Platinum compounds for high-resolution in vivo cancer imaging. ChemMedChem9, 1131–1135 (2014). ArticleCASPubMedPubMed Central Google Scholar
Dubach, J. M. et al. In vivo imaging of specific drug-target binding at subcellular resolution. Nat. Commun.5, 3946 (2014). ArticleCASPubMed Google Scholar
Miller, M. A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun.6, 8692 (2015). ArticleCASPubMedPubMed Central Google Scholar
Miller, M. A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl Med.7, 314ra183 (2015). A combined approach of MRI and intravital imaging, which demonstrated that magnetic nanoparticles can be used to select for tumoursin vivowith high EPR and thus are more likely to respond to treatment with therapeutic nanoparticles. ArticlePubMedPubMed Central Google Scholar
Harisinghani, M. G. et al. A pilot study of lymphotrophic nanoparticle-enhanced magnetic resonance imaging technique in early stage testicular cancer: a new method for noninvasive lymph node evaluation. Urology66, 1066–1071 (2005). ArticlePubMed Google Scholar
Wyckoff, J., Gligorijevic, B., Entenberg, D., Segall, J. & Condeelis, J. High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb. Protoc.2011, 1167–1184 (2011). PubMedPubMed Central Google Scholar
Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med.7, 987–989 (2001). Seminal paper to put forward the vascular normalization hypothesis that changed the paradigm in antiangiogenic therapy. ArticleCASPubMed Google Scholar
Wang, W. et al. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res.67, 3505–3511 (2007). ArticleCASPubMed Google Scholar
Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res.64, 7022–7029 (2004). ArticleCASPubMed Google Scholar
Lohela, M. et al. Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proc. Natl Acad. Sci. USA111, E5086–E5095 (2014). ArticleCASPubMedPubMed Central Google Scholar
Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res.65, 5278–5283 (2005). ArticleCASPubMed Google Scholar
Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res.67, 2649–2656 (2007). ArticleCASPubMed Google Scholar
Peterson, T. E. et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc. Natl Acad. Sci. USA113, 4470–4475 (2016). ArticleCASPubMedPubMed Central Google Scholar
Brown, E. et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med.9, 796–800 (2003). ArticleCASPubMed Google Scholar
Nadiarnykh, O., LaComb, R. B., Brewer, M. A. & Campagnola, P. J. Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy. BMC Cancer10, 94 (2010). ArticlePubMedPubMed Central Google Scholar
Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol.178, 1221–1232 (2011). ArticlePubMedPubMed Central Google Scholar
Gailhouste, L. et al. Fibrillar collagen scoring by second harmonic microscopy: a new tool in the assessment of liver fibrosis. J. Hepatol.52, 398–406 (2010). ArticleCASPubMed Google Scholar
Weigelin, B., Bakker, G.-J. & Friedl, P. Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci.129, 245–255 (2016). ArticleCASPubMed Google Scholar
Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng.1, 0056 (2017). ArticlePubMedPubMed Central Google Scholar
Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature527, 499–502 (2015). ArticleCASPubMed Google Scholar
Nelson, S. J. et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl Med.5, 198ra108 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell11, 526–538 (2007). Seminal study identifying a novel mechanism underlying metastasis through the lymphatic system, named autologous chemotaxis, which directs tumour cell migration via autocrine chemokine gradients induced by interstitial flow. ArticleCASPubMed Google Scholar
Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA108, 11115–11120 (2011). ArticlePubMedPubMed Central Google Scholar
Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer17, 131–140 (2016). ArticleCASPubMedPubMed Central Google Scholar
Mekhdjian, A. H. et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol. Biol. Cell28, 1467–1488 (2017). ArticleCASPubMedPubMed Central Google Scholar
Alexander, S., Weigelin, B., Winkler, F. & Friedl, P. Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr. Opin. Cell Biol.25, 659–671 (2013). ArticleCASPubMed Google Scholar
Kraning-Rush, C. M., Carey, S. P. & Lampi, M. C. Microfabricated collagen tracks facilitate single cell metastatic invasion in 3D. Integr. Biol.5, 606–616 (2013). ArticleCAS Google Scholar
Carey, S. P. et al. Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks. Am. J. Physiol., Cell Physiol.308, C436–C447 (2015). ArticleCAS Google Scholar
Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl Acad. Sci.109, 10334–10339 (2012). ArticlePubMedPubMed Central Google Scholar
Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science352, 359–362 (2016). ArticleCASPubMed Google Scholar
Irianto, J. et al. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol.27, 210–223 (2017). ArticleCASPubMed Google Scholar
Song, J. W. et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS ONE4, e5756 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bersini, S. et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials35, 2454–2461 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sung, J. H. & Shuler, M. L. A micro cell culture analog (μCCA) with 3D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip9, 1385–1394 (2009). Early work using organs-on-chip models, demonstrating that microfluidic devices combined with 3D hydrogel cell cultures representing individual organs can accurately reproduce anticancer drug effects observedin vivo. ArticleCASPubMed Google Scholar
Sung, J. H., Kam, C. & Shuler, M. L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip10, 446–455 (2010). ArticleCASPubMed Google Scholar
Yu, M., Stott, S., Toner, M., Maheswaran, S. & Haber, D. A. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol.192, 373–382 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yu, M. et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science345, 216–220 (2014). ArticleCASPubMedPubMed Central Google Scholar
Murlidhar, V., Rivera- Báez, L. & Nagrath, S. Affinity versus label-free isolation of circulating tumor cells: who wins? Small12, 4450–4463 (2016). ArticleCASPubMed Google Scholar
Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature450, 1235–1239 (2007). Seminal study that developed a unique flow-based microfluidic platform containing antibody-coated microposts to isolate rare CTCs from the blood of patients with metastatic cancer. ArticleCASPubMedPubMed Central Google Scholar
Yoon, H. J. et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol.8, 735–741 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gleghorn, J. P. et al. Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip10, 27–29 (2010). ArticleCASPubMed Google Scholar
Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl Med.5, 179ra47 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hou, J.-M. et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small cell lung cancer. J. Clin. Oncol.30, 525–532 (2012). ArticlePubMed Google Scholar
Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14- expressing tumor cell clusters. Proc. Natl Acad. Sci. USA113, E854–E863 (2016). ArticleCASPubMedPubMed Central Google Scholar
Sarioglu, A. F. et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods12, 685–691 (2015). ArticleCASPubMedPubMed Central Google Scholar
Liga, A., Vliegenthart, A., Oosthuyzen, W., Dear, J. W. & Kersaudy-Kerhoas, M. Exosome isolation: a microfluidic road-map. Lab Chip15, 2388–2394 (2015). ArticleCASPubMed Google Scholar
Chen, C. et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip10, 505–511 (2010). ArticleCASPubMed Google Scholar
Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol.32, 490–495 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wunsch, B. H. et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol.11, 936–940 (2016). ArticleCASPubMed Google Scholar
Farrell, D. et al. Recent advances from the National Cancer Institute Alliance for Nanotechnology in Cancer. ACS Nano4, 589–594 (2010). ArticleCASPubMed Google Scholar
Kuhn, N. Z. & Nagahara, L. A. Integrating physical sciences perspectives in cancer research. Sci. Transl Med.5, 183fs14 (2013). ArticleCASPubMed Google Scholar