BRST quantization (original) (raw)

About DBpedia

Die Becchi-Rouet-Stora-Tyutin-Symmetrie, kurz BRST-Symmetrie, teilweise auch nur Becchi-Rouet-Stora-Symmetrie (BRS-Symmetrie), nach Carlo Becchi, Alain Rouet, Raymond Stora und Igor Tyutin, ist eine Symmetrie in der Quantenfeldtheorie, die noch vorhanden ist, wenn die Eichung des Quantenfeldes bereits festgelegt wurde und das Quantenfeld dadurch nicht mehr eichsymmetrisch ist. Dies wird ermöglicht, indem die BRST-Symmetrie zusätzlich zur ursprünglichen Eichsymmetrie die Existenz der durch die Eichung entstehenden unphysikalischen Faddejew-Popow-Geister berücksichtigt und die Symmetrie auf der Basis von antikommutierenden Graßmann-Zahlen aufgebaut ist.

Property Value
dbo:abstract Die Becchi-Rouet-Stora-Tyutin-Symmetrie, kurz BRST-Symmetrie, teilweise auch nur Becchi-Rouet-Stora-Symmetrie (BRS-Symmetrie), nach Carlo Becchi, Alain Rouet, Raymond Stora und Igor Tyutin, ist eine Symmetrie in der Quantenfeldtheorie, die noch vorhanden ist, wenn die Eichung des Quantenfeldes bereits festgelegt wurde und das Quantenfeld dadurch nicht mehr eichsymmetrisch ist. Dies wird ermöglicht, indem die BRST-Symmetrie zusätzlich zur ursprünglichen Eichsymmetrie die Existenz der durch die Eichung entstehenden unphysikalischen Faddejew-Popow-Geister berücksichtigt und die Symmetrie auf der Basis von antikommutierenden Graßmann-Zahlen aufgebaut ist. (de) In theoretical physics, the BRST formalism, or BRST quantization (where the BRST refers to the last names of Carlo Becchi, , Raymond Stora and Igor Tyutin) denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation. The BRST global supersymmetry introduced in the mid-1970s was quickly understood to rationalize the introduction of these Faddeev–Popov ghosts and their exclusion from "physical" asymptotic states when performing QFT calculations. Crucially, this symmetry of the path integral is preserved in loop order, and thus prevents introduction of counterterms which might spoil renormalizability of gauge theories. Work by other authors a few years later related the BRST operator to the existence of a rigorous alternative to path integrals when quantizing a gauge theory. Only in the late 1980s, when QFT was reformulated in fiber bundle language for application to problems in the topology of low-dimensional manifolds (topological quantum field theory), did it become apparent that the BRST "transformation" is fundamentally geometrical in character. In this light, "BRST quantization" becomes more than an alternate way to arrive at anomaly-cancelling ghosts. It is a different perspective on what the ghost fields represent, why the Faddeev–Popov method works, and how it is related to the use of Hamiltonian mechanics to construct a perturbative framework. The relationship between gauge invariance and "BRST invariance" forces the choice of a Hamiltonian system whose states are composed of "particles" according to the rules familiar from the canonical quantization formalism. This esoteric consistency condition therefore comes quite close to explaining how quanta and fermions arise in physics to begin with. In certain cases, notably gravity and supergravity, BRST must be superseded by a more general formalism, the Batalin–Vilkovisky formalism. (en) BRST 양자화(영어: BRST quantization) 또는 베키-루에-스토라-튜틴 양자화(영어: Becchi–Rouet–Stora–Tyutin quantization)는 게이지 이론을 양자화하는 한 방법이다. 게이지 이론은 비물리적인 대칭(게이지 대칭)을 지녀 그냥 양자화하기 어렵다. 게이지 대칭을 무시하고 그냥 양자화하면 그 힐베르트 공간이 양의 정부호의 내적을 얻지 못한다. 따라서 상태공간에 차수(grading)를 붙이고 코호몰로지를 만들어 물리적 힐베르트 공간을 얻는다. (ko) Метод квантования Бекки — Руэ́ — Стора́ — Тютина (BRST-квантование) — метод теоретической физики, использующий строгий подход к квантованию теории поля при наличии калибровочной симметрии. Назван по именам (англ. Carlo Becchi), Алена Руэ (Alain Rouet), (фр. Raymond Stora) и Игоря Тютина. Правила квантования в ранних методах квантовой теории поля в большей степени были набором практических эвристик («рецептов»), нежели строгой системой. Особенно это касается случая , где использование «духов Фаддеева — Попова» с причудливыми свойствами просто необходимо по некоторым техническим причинам, связанным с ренормализацией и некорректным сокращением. BRST-суперсимметрия была изобретена в середине 1970-х и довольно быстро воспринята сообществом как способ строгого обоснования для введения духов Фаддеева — Попова и их исключения из физических асимптотик при вычислениях. Несколько лет спустя в работе другого автора[уточнить] была показано, что BRST-оператор свидетельствует о существовании формальной альтернативы интеграла по путям при квантовании калибровочной теории. Только в конце 1980-х готов, когда квантовая теория поля была сформулирована в терминах для возможности решения топологических проблем многообразий низкой размерности (теория Дональдсона), стало очевидно, что по своему характеру BRST-преобразование является фундаментально геометрическим. В таком свете «BRST-квантование» становится не просто способом добиться аномально сокращающихся гостов[уточнить]. Это другой взгляд на то, что собой представляют поля-духи, почему справедлив метод Фаддеева — Попова и как он связан с использованием гамильтоновой механики при конструировании модели возмущений. Соотношение между калибровочной инвариантностью и «BRST-инвариантностью» ограничивает выбор гамильтоновых систем, чьи состояния состоят из «частиц» в соответствии с правилами канонического квантования. Эта неявная согласованность подходит довольно близко к объяснению, откуда в физике появляются кванты и фермионы. В определенных случаях, в частности в теориях гравитации и супергравитации, BRST-квантование должно быть заменено более общим формализмом . (ru) 在理論物理學中,BRST量子化是指以較嚴格的數學方式、藉由規範對稱性以量子化場論,它以卡洛·贝基(Becchi)、阿兰·鲁埃(Rouet)、雷蒙·斯托拉(Stora)和伊戈尔·秋京(Tyutin)的首字母命名。在早期量子場論中,特別是,其中的「鬼場」幾乎都是以重整化和的方式處理。 70年代中期推出的BRST超對稱對量子場論進行計算時,合理引入法捷耶夫-波波夫鬼粒子,並從物理漸近狀態將其排除在外。至關重要的是,路徑積分得以防止引入可能破壞規範理論的項目。直到數十年後,物理學家才以BRST替代路徑積分的存在。 在20世紀80年代末,當量子場論得以解決低維流形拓撲結構的問題,BRST量子化變得比在利用以反常抵消解決鬼場的方法更有效。這種修改原始作用量,添加進去一個額外的場(鬼場)並打破規範對稱性的方法,即被稱作「法捷耶夫-波波夫方法」。至於規範不變性和BRST不變性之間的關係,使得哈密頓系統的狀態由粒子的規範量子化選擇。此外,在某些情況下,特別是重力和超引力,BRST必須由更一般的形式,例如以巴塔林-維爾可維斯基代數取代。 (zh)
dbo:wikiPageExternalLink http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104116716 http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104161738 http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104178989 http://projecteuclid.org/euclid.cmp/1104202348%7Cdoi=10.1007/BF02100022%7Cissn=0010-3616%7Cpublisher= http://www.numdam.org/item/RCP25_1975__22__A10_0/ http://www.numdam.org/item/RCP25_1975__22__A9_0/ https://arxiv.org/abs/0812.0580 https://arxiv.org/abs/hep-th/9607181 https://arxiv.org/search/%3Fquery=brst+cohomology&searchtype=all&source=header
dbo:wikiPageID 6769980 (xsd:integer)
dbo:wikiPageLength 52572 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1108637961 (xsd:integer)
dbo:wikiPageWikiLink dbr:Canonical_quantization dbr:Carlo_Becchi dbr:Quantum_electrodynamics dbr:Quantum_field_theory dbr:Quantum_state dbr:Quark_confinement dbr:Definite_bilinear_form dbr:Anomaly_(physics) dbr:Path_integral_formulation dbr:Perturbation_theory_(quantum_mechanics) dbr:Renormalizable dbr:Renormalization dbr:Vector_space dbr:Victor_Popov dbr:Donaldson_theory dbr:Lie_algebra_cohomology dbr:Lie_derivative dbr:Lie_group dbr:Lie_superalgebra dbr:Positive_definiteness dbc:Gauge_theories dbc:Quantum_chromodynamics dbr:Connection_form dbr:Coupling_constant dbr:Maurer–Cartan_form dbr:Measure_(mathematics) dbr:S-matrix dbr:Gauge_anomaly dbr:Gauge_theory dbr:Non-abelian_group dbr:Operator_(mathematics) dbr:Yang–Mills_theory dbr:Pullback_(differential_geometry) dbr:Clairaut's_theorem dbc:Cohomology_theories dbr:Edward_Witten dbr:Eigenvalue dbr:Electroweak_theory dbr:Elsevier dbr:Energy dbr:Gauge_fixing dbr:Gauge_symmetry dbr:General_relativity dbr:Generalized_Stokes_theorem dbr:Graded_algebra dbr:Minkowski_metric dbr:Connection_(principal_bundle) dbr:Coordinate_system dbr:Symplectic_reduction dbr:Batalin–Vilkovisky_formalism dbr:Lie_algebra dbr:Lorentz_invariance dbr:Standard_Model dbr:String_theory dbr:Collider dbr:Color_confinement dbr:Functional_determinant dbr:Igor_Tyutin dbr:Koszul_complex dbr:Gauge_invariance dbr:Gauge_transformation dbr:Ghost_fields dbr:Partial_derivative dbr:Particle_physics dbr:Phase_space dbr:Theoretical_physics dbr:Stationary_phase_approximation dbr:Symmetry_group dbr:Automorphism dbr:Bryce_DeWitt dbr:Active_and_passive_transformation dbr:Adiabatic_theorem dbr:Torsor dbr:Dyson_series dbr:Exterior_derivative dbr:Fermions dbr:Feynman_diagrams dbr:Feynman_path_integral dbr:Fiber_bundle dbr:First_class_constraint dbr:Fock_state dbr:Nilpotence dbr:Dimensional_regularization dbr:Fock_space dbr:Graded_vector_space dbr:Equivalence_classes dbr:Legendre_transformation dbr:Quantum_chromodynamics dbr:Gerardus_'t_Hooft dbr:High-energy_physics dbr:Quantization_(physics) dbr:Quantum dbr:Quotient_space_(topology) dbr:Standard_resolution dbr:Group_action_(mathematics) dbr:Hamiltonian_mechanics dbr:Hamiltonian_system dbr:Hilbert_space dbr:Asymptotic_freedom dbr:Jacobian_matrix_and_determinant dbr:Covariant_derivative dbr:Hamiltonian_action dbr:Charge_conservation dbr:Kernel_(set_theory) dbr:Lagrangian_density dbr:Lagrangian_system dbr:Supergravity dbr:Symplectic_geometry dbr:Cohomology dbr:Higgs_mechanism dbr:Effective_field_theories dbr:Differential_geometry dbr:Auxiliary_field dbr:Manifold dbr:C-number dbr:Spontaneous_symmetry_breaking dbr:Fermi–Dirac_statistics dbr:Group_representation dbr:Gribov_ambiguities dbr:Ideal_(set_theory) dbr:Inertial_frame_of_reference dbr:Inner_product dbr:Interaction_picture dbr:Kronecker_delta dbr:Raymond_Stora dbr:Lie_bracket_of_vector_fields dbr:Longitudinal_wave dbr:Lorentz_scalar dbr:Mathematical_singularity dbr:Scattering dbr:Section_(fiber_bundle) dbr:Unitary_matrix dbr:Faddeev–Popov_ghost dbr:Image dbr:Image_(mathematics) dbr:Principal_bundle dbr:Poincaré_group dbr:Supersymmetry dbr:Hermitian_operator dbr:Moment_map dbr:Ultraviolet_divergences dbr:Inner_derivative dbr:Topological_quantum_field_theory dbr:Spin–statistics_theorem dbr:Anomaly_cancellation dbr:Perturbative_expansion dbr:Krein_space dbr:Springer-Verlag dbr:Ward_identities dbr:Vector_fields dbr:Four-potential dbr:Feynman_rules dbr:Field_operators dbr:Functional_integral dbr:One-loop_order dbr:Classical_electrodynamics dbr:Dirac_picture dbr:Gauge_group dbr:Action_principle dbr:Ludwig_D._Faddeev dbr:Ladder_operators dbr:Virtual_photons dbr:Cochain_complex dbr:Interaction_Hamiltonian dbr:Closed_differential_form dbr:Lorenz_gauge dbr:Antiderivation dbr:Exact_form dbr:Exterior_calculus dbr:Horizontal_lift dbr:Structure_group dbr:Time-dependent_perturbation_theory dbr:Time_evolution_operator dbr:Alain_Rouet dbr:Functional_quantization dbr:Ghost_numbers dbr:Local_polynomial dbr:Right-invariant dbr:Top_form dbr:Vertical_diffeomorphism dbr:Wikt:antighost
dbp:wikiPageUsesTemplate dbt:Citation dbt:Cite_journal dbt:Expand_section dbt:ISBN dbt:Ill dbt:Reflist dbt:Short_description
dcterms:subject dbc:Gauge_theories dbc:Quantum_chromodynamics dbc:Cohomology_theories
rdf:type yago:WikicatCohomologyTheories yago:Abstraction100002137 yago:Cognition100023271 yago:Explanation105793000 yago:HigherCognitiveProcess105770664 yago:Process105701363 yago:PsychologicalFeature100023100 yago:Theory105989479 yago:Thinking105770926
rdfs:comment Die Becchi-Rouet-Stora-Tyutin-Symmetrie, kurz BRST-Symmetrie, teilweise auch nur Becchi-Rouet-Stora-Symmetrie (BRS-Symmetrie), nach Carlo Becchi, Alain Rouet, Raymond Stora und Igor Tyutin, ist eine Symmetrie in der Quantenfeldtheorie, die noch vorhanden ist, wenn die Eichung des Quantenfeldes bereits festgelegt wurde und das Quantenfeld dadurch nicht mehr eichsymmetrisch ist. Dies wird ermöglicht, indem die BRST-Symmetrie zusätzlich zur ursprünglichen Eichsymmetrie die Existenz der durch die Eichung entstehenden unphysikalischen Faddejew-Popow-Geister berücksichtigt und die Symmetrie auf der Basis von antikommutierenden Graßmann-Zahlen aufgebaut ist. (de) BRST 양자화(영어: BRST quantization) 또는 베키-루에-스토라-튜틴 양자화(영어: Becchi–Rouet–Stora–Tyutin quantization)는 게이지 이론을 양자화하는 한 방법이다. 게이지 이론은 비물리적인 대칭(게이지 대칭)을 지녀 그냥 양자화하기 어렵다. 게이지 대칭을 무시하고 그냥 양자화하면 그 힐베르트 공간이 양의 정부호의 내적을 얻지 못한다. 따라서 상태공간에 차수(grading)를 붙이고 코호몰로지를 만들어 물리적 힐베르트 공간을 얻는다. (ko) 在理論物理學中,BRST量子化是指以較嚴格的數學方式、藉由規範對稱性以量子化場論,它以卡洛·贝基(Becchi)、阿兰·鲁埃(Rouet)、雷蒙·斯托拉(Stora)和伊戈尔·秋京(Tyutin)的首字母命名。在早期量子場論中,特別是,其中的「鬼場」幾乎都是以重整化和的方式處理。 70年代中期推出的BRST超對稱對量子場論進行計算時,合理引入法捷耶夫-波波夫鬼粒子,並從物理漸近狀態將其排除在外。至關重要的是,路徑積分得以防止引入可能破壞規範理論的項目。直到數十年後,物理學家才以BRST替代路徑積分的存在。 在20世紀80年代末,當量子場論得以解決低維流形拓撲結構的問題,BRST量子化變得比在利用以反常抵消解決鬼場的方法更有效。這種修改原始作用量,添加進去一個額外的場(鬼場)並打破規範對稱性的方法,即被稱作「法捷耶夫-波波夫方法」。至於規範不變性和BRST不變性之間的關係,使得哈密頓系統的狀態由粒子的規範量子化選擇。此外,在某些情況下,特別是重力和超引力,BRST必須由更一般的形式,例如以巴塔林-維爾可維斯基代數取代。 (zh) In theoretical physics, the BRST formalism, or BRST quantization (where the BRST refers to the last names of Carlo Becchi, , Raymond Stora and Igor Tyutin) denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation. (en) Метод квантования Бекки — Руэ́ — Стора́ — Тютина (BRST-квантование) — метод теоретической физики, использующий строгий подход к квантованию теории поля при наличии калибровочной симметрии. Назван по именам (англ. Carlo Becchi), Алена Руэ (Alain Rouet), (фр. Raymond Stora) и Игоря Тютина. В определенных случаях, в частности в теориях гравитации и супергравитации, BRST-квантование должно быть заменено более общим формализмом . (ru)
rdfs:label BRST-Symmetrie (de) BRST quantization (en) BRST 양자화 (ko) Метод квантования Бекки — Руэ — Стора — Тютина (ru) BRST量子化 (zh)
owl:sameAs freebase:BRST quantization yago-res:BRST quantization wikidata:BRST quantization dbpedia-de:BRST quantization dbpedia-ko:BRST quantization dbpedia-ru:BRST quantization dbpedia-zh:BRST quantization https://global.dbpedia.org/id/2ZtPV
prov:wasDerivedFrom wikipedia-en:BRST_quantization?oldid=1108637961&ns=0
foaf:isPrimaryTopicOf wikipedia-en:BRST_quantization
is dbo:knownFor of dbr:Raymond_Stora
is dbo:wikiPageDisambiguates of dbr:BRST
is dbo:wikiPageRedirects of dbr:BRST_Quantization dbr:BRST_formalism dbr:BRST_charge dbr:BRST_cohomology dbr:BRST_methods dbr:BRST_operator dbr:BRST_supersymmetry dbr:BRST_symmetry dbr:BRS_charge dbr:BRS_quantization dbr:Becchi-Rouet-Stora-Tyutin_symmetry
is dbo:wikiPageWikiLink of dbr:BRST dbr:BRST_Quantization dbr:Quantum_field_theory dbr:Daya_Shankar_Kulshreshtha dbr:Path_integral_formulation dbr:Renata_Kallosh dbr:Usha_Kulshreshtha dbr:Index_of_physics_articles_(B) dbr:BRST_formalism dbr:Gauge_theory dbr:Geometrodynamics dbr:Giovanni_Felder dbr:Glossary_of_string_theory dbr:Batalin–Vilkovisky_formalism dbr:Howard_Garland dbr:Marc_Henneaux dbr:Weinberg–Witten_theorem dbr:Daniel_Kastler dbr:Quantum_chromodynamics dbr:Gribov_ambiguity dbr:Group_cohomology dbr:Harald_J._W._Mueller-Kirsten dbr:Raymond_Stora dbr:String_field_theory dbr:List_of_École_Polytechnique_alumni dbr:Poisson_superalgebra dbr:Supermanifold dbr:Topological_quantum_field_theory dbr:BRST_charge dbr:BRST_cohomology dbr:BRST_methods dbr:BRST_operator dbr:BRST_supersymmetry dbr:BRST_symmetry dbr:BRS_charge dbr:BRS_quantization dbr:Supersymmetric_theory_of_stochastic_dynamics dbr:Becchi-Rouet-Stora-Tyutin_symmetry
is dbp:knownFor of dbr:Raymond_Stora
is foaf:primaryTopic of wikipedia-en:BRST_quantization