- Katzberg, A. A. Distance as a factor in the development of attraction fields between growing tissues in culture. Science 114, 431–432 (1951).
Article ADS CAS PubMed Google Scholar
- Keese, C. R. & Giaever, I. Substrate mechanics and cell spreading. Exp. Cell Res. 195, 528–532 (1991).
Article CAS PubMed Google Scholar
- Pelham, R. J. Jr & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).
Article ADS CAS PubMed PubMed Central Google Scholar
- Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).
Article ADS CAS PubMed Google Scholar
- DuFort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12, 308–319 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).
Article CAS PubMed Google Scholar
- Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).
Article CAS PubMed Google Scholar
- Janmey, P. A., Fletcher, D. & Reinhart-King, C. A. Stiffness sensing in cells and tissues. Physiol. Rev. 100, 695–724 (2020).
Article PubMed Google Scholar
- Bellin, R. M. et al. Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proc. Natl Acad. Sci. USA 106, 22102–22107 (2009).
Article ADS CAS PubMed PubMed Central Google Scholar
- Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).
Article ADS CAS PubMed PubMed Central Google Scholar
- Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).
Article CAS Google Scholar
- Stowers, R. S. et al. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat. Biomed. Eng. 3, 1009–1019 (2019).
Article PubMed PubMed Central Google Scholar
- Levental, I., Georges, P. C. & Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).
Article ADS CAS PubMed Google Scholar
- Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Wang, J. H. Mechanobiology of tendon. J. Biomech. 39, 1563–1582 (2006).
Article PubMed Google Scholar
- Mazza, E., Papes, O., Rubin, M. B., Bodner, S. R. & Binur, N. S. Nonlinear elastic-viscoplastic constitutive equations for aging facial tissues. Biomech. Model. Mechanobiol. 4, 178–189 (2005).
Article CAS PubMed Google Scholar
- Malandrino, A., Trepat, X., Kamm, R. D. & Mak, M. Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices. PLoS Comput. Biol. 15, e1006684 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
- Ban, E. et al. Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophys. J. 114, 450–461 (2018). This study used computational modelling to show that the observed plasticity of collagen networks is caused by the formation of new crosslinks if moderate strains are applied at small rates or due to permanent fibre elongation if large strains are applied over short periods, matching experimental findings.
Article ADS CAS PubMed PubMed Central Google Scholar
- Nam, S., Lee, J., Brownfield, D. G. & Chaudhuri, O. Viscoplasticity enables mechanical remodeling of matrix by cells. Biophys. J. 111, 2296–2308 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
- Clement, R., Dehapiot, B., Collinet, C., Lecuit, T. & Lenne, P. F. Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis. Curr. Biol. 27, 3132–3142 (2017).
Article CAS PubMed Google Scholar
- Lardennois, A. et al. An actin-based viscoplastic lock ensures progressive body-axis elongation. Nature 573, 266–270 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
- Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).
Article ADS CAS PubMed Google Scholar
- Shadwick, R. E. Mechanical design in arteries. J. Exp. Biol. 202, 3305–3313 (1999).
Article CAS PubMed Google Scholar
- Li, W., Shepherd, D. E. T. & Espino, D. M. Frequency dependent viscoelastic properties of porcine brain tissue. J. Mech. Behav. Biomed. Mater. 102, 103460 (2020).
Article CAS PubMed Google Scholar
- Bilston, L. E., Liu, Z. & Phan-Thien, N. Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34, 377–385 (1997).
Article CAS PubMed Google Scholar
- Budday, S., Sommer, G., Holzapfel, G. A., Steinmann, P. & Kuhl, E. Viscoelastic parameter identification of human brain tissue. J. Mech. Behav. Biomed. Mater. 74, 463–476 (2017).
Article CAS PubMed Google Scholar
- Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016). This study demonstrated an approach to modulating the stress relaxation or loss modulus of alginate hydrogels independent of the initial elastic modulus, and found that increased stress relaxation promoted cell spreading, proliferation and osteogenic differentiation of mesenchymal stem cells in three-dimensional culture.
Article ADS CAS PubMed Google Scholar
- McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26, 865–872 (2014). This study demonstrated the use of hydrozone bonds to form viscoelastic PEG gels, and found that the viscoelastic gels enabled myoblast spreading in three-dimensional culture.
Article CAS PubMed Google Scholar
- Reihsner, R. & Menzel, E. J. Two-dimensional stress-relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine. J. Biomech. 31, 985–993 (1998).
Article CAS PubMed Google Scholar
- Geerligs, M., Peters, G. W., Ackermans, P. A., Oomens, C. W. & Baaijens, F. P. Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45, 677–688 (2008).
Article PubMed Google Scholar
- Qiu, S. et al. Characterizing viscoelastic properties of breast cancer tissue in a mouse model using indentation. J. Biomech. 69, 81–89 (2018).
Article PubMed Google Scholar
- Liu, Z. & Bilston, L. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 37, 191–201 (2000).
CAS PubMed Google Scholar
- Perepelyuk, M. et al. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. PLoS One 11, e0146588 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Forgacs, G., Foty, R. A., Shafrir, Y. & Steinberg, M. S. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74, 2227–2234 (1998).
Article ADS CAS PubMed PubMed Central Google Scholar
- Gersh, K. C., Nagaswami, C. & Weisel, J. W. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb. Haemost. 102, 1169–1175 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Streitberger, K. J. et al. High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography. PLoS One 9, e110588 (2014).
Article ADS PubMed PubMed Central CAS Google Scholar
- Sack, I. et al. The impact of aging and gender on brain viscoelasticity. Neuroimage 46, 652–657 (2009).
Article PubMed Google Scholar
- Streitberger, K. J. et al. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLoS One 7, e29888 (2012).
Article ADS CAS PubMed PubMed Central Google Scholar
- Sinkus, R. et al. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn. Reson. Med. 58, 1135–1144 (2007). These studies (Streitberger et al. (2014) and Sinkus et al. (2007)) utilized magnetic resonance elastography to analyse changes in tissue viscoelasticity during cancer, and find that there were striking differences in viscoelasticity between malignant and benign breast tumors, and between glioblastoma and healthy brain parenchyma.
Article PubMed Google Scholar
- Nam, S., Hu, K. H., Butte, M. J. & Chaudhuri, O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl Acad. Sci. USA 113, 5492–5497 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
- Gerth, C., Roberts, W. W. & Ferry, J. D. Rheology of fibrin clots. II. Linear viscoelastic behavior in shear creep. Biophys. Chem. 2, 208–217 (1974).
Article CAS PubMed Google Scholar
- Liu, W. et al. Fibrin fibers have extraordinary extensibility and elasticity. Science 313, 634 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Connizzo, B. K. & Grodzinsky, A. J. Multiscale poroviscoelastic compressive properties of mouse supraspinatus tendons are altered in young and aged mice. J. Biomech. Eng. 140, 051002 (2018). This and earlier related studies emphasize the importance of poroelastic relaxation in the design of tissues and their changes with injury, disease and ageing.
Article Google Scholar
- Sauer, F. et al. Collagen networks determine viscoelastic properties of connective tissues yet do not hinder diffusion of the aqueous solvent. Soft Matter 15, 3055–3064 (2019).
Article ADS CAS PubMed Google Scholar
- Munster, S. et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl Acad. Sci. USA 110, 12197–12202 (2013).
Article ADS CAS PubMed PubMed Central Google Scholar
- Yang, W. et al. On the tear resistance of skin. Nat. Commun. 6, 6649 (2015).
Article ADS CAS PubMed Google Scholar
- Silver, F. H., Freeman, J. W. & Seehra, G. P. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36, 1529–1553 (2003).
Article PubMed Google Scholar
- Oxlund, H., Manschot, J. & Viidik, A. The role of elastin in the mechanical properties of skin. J. Biomech. 21, 213–218 (1988).
Article CAS PubMed Google Scholar
- Vesely, I. The role of elastin in aortic valve mechanics. J. Biomech. 31, 115–123 (1997).
Article Google Scholar
- DeBenedictis, E. P. & Keten, S. Mechanical unfolding of alpha- and beta-helical protein motifs. Soft Matter 15, 1243–1252 (2019).
Article ADS CAS PubMed Google Scholar
- Zhao, X. H. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).
Article ADS CAS PubMed PubMed Central Google Scholar
- Brown, A. E., Litvinov, R. I., Discher, D. E., Purohit, P. K. & Weisel, J. W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325, 741–744 (2009).
Article ADS CAS PubMed PubMed Central Google Scholar
- Paramore, S., Ayton, G. S. & Voth, G. A. Extending a spectrin repeat unit. II: rupture behavior. Biophys. J. 90, 101–111 (2006).
Article ADS CAS PubMed Google Scholar
- Takahashi, H., Rico, F., Chipot, C. & Scheuring, S. α-Helix unwinding as force buffer in spectrins. ACS Nano 12, 2719–2727 (2018).
Article CAS PubMed Google Scholar
- Block, J. et al. Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. Sci. Adv. 4, eaat1161 (2018).
Article ADS PubMed PubMed Central CAS Google Scholar
- Oftadeh, R., Connizzo, B. K., Nia, H. T., Ortiz, C. & Grodzinsky, A. J. Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: application to tendon and skin biophysics. Acta Biomater. 70, 249–259 (2018).
Article PubMed Google Scholar
- van Oosten, A. S. et al. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci. Rep. 6, 19270 (2016).
Article ADS PubMed PubMed Central CAS Google Scholar
- Mollaeian, K., Liu, Y., Bi, S. & Ren, J. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells. J. Mech. Behav. Biomed. Mater. 78, 65–73 (2018).
Article CAS PubMed Google Scholar
- Hu, J. et al. Size- and speed-dependent mechanical behavior in living mammalian cytoplasm. Proc. Natl Acad. Sci. USA 114, 9529–9534 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Mitchison, T. J., Charras, G. T. & Mahadevan, L. Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin. Cell Dev. Biol. 19, 215–223 (2008).
Article CAS PubMed Google Scholar
- Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).
Article ADS CAS PubMed PubMed Central Google Scholar
- Guo, M. et al. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158, 822–832 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Humphrey, D., Duggan, C., Saha, D., Smith, D. & Kas, J. Active fluidization of polymer networks through molecular motors. Nature 416, 413–416 (2002).
Article ADS CAS PubMed Google Scholar
- Vader, D., Kabla, A., Weitz, D. & Mahadevan, L. Strain-induced alignment in collagen gels. PLoS One 4, e5902 (2009).
Article ADS PubMed PubMed Central Google Scholar
- Hall, M. S. et al. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc. Natl Acad. Sci. USA 113, 14043–14048 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Steinwachs, J. et al. Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 13, 171–176 (2016).
Article CAS PubMed Google Scholar
- Wang, H., Abhilash, A. S., Chen, C. S., Wells, R. G. & Shenoy, V. B. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys. J. 107, 2592–2603 (2014).
Article ADS CAS PubMed PubMed Central Google Scholar
- Licup, A. J. et al. Stress controls the mechanics of collagen networks. Proc. Natl Acad. Sci. USA 112, 9573–9578 (2015).
Article ADS CAS PubMed PubMed Central Google Scholar
- Han, Y. L. et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl Acad. Sci. USA 115, 4075–4080 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Ban, E. et al. Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proc. Natl Acad. Sci. USA 116, 6790–6799 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
- Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).
Article ADS CAS PubMed Google Scholar
- Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007).
Article ADS CAS PubMed PubMed Central Google Scholar
- Cameron, A. R., Frith, J. E. & Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32, 5979–5993 (2011). This study demonstrated an approach to modulating the loss modulus of PAM hydrogels independently of the elastic modulus, thereby creating a range of stiffness-matched substrates of varying viscoelasticity, showing that substrates that permitted increased creep under cell-generated stresses promoted increased cell spreading, proliferation, and tri-lineage differentiation of mesenchymal stem cells in two-dimensional culture.
Article CAS PubMed Google Scholar
- Cameron, A. R., Frith, J. E., Gomez, G. A., Yap, A. S. & Cooper-White, J. J. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 35, 1857–1868 (2014). This study demonstrated that increasing levels of dissipation in viscoelastic substrates matching skeletal muscle stiffness biased Rho-GTPase activity to drive Rac1-mediated myogenic induction of mesenchymal stem cells in two-dimensional culture.
Article CAS PubMed Google Scholar
- Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6365 (2015).
Article ADS CAS Google Scholar
- Charrier, E. E., Pogoda, K., Wells, R. G. & Janmey, P. A. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat. Commun. 9, 449 (2018). This study reported a method of producing viscoelastic solid substrates with separately tunable elastic and viscous moduli and showed that several cell types respond to viscoelastic substrates as though they were softer than purely elastic substrates of the same elastic modulus.
Article ADS PubMed PubMed Central CAS Google Scholar
- Hui, E., Gimeno, K. I., Guan, G. & Caliari, S. R. Spatiotemporal control of viscoelasticity in phototunable hyaluronic acid hydrogels. Biomacromolecules 20, 4126–4134 (2019).
Article CAS PubMed PubMed Central Google Scholar
- Mandal, K., Gong, Z., Rylander, A., Shenoy, V. B. & Janmey, P. A. Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomater. Sci. 8, 1316–1328 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Bangasser, B. L., Rosenfeld, S. S. & Odde, D. J. Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment. Biophys. J. 105, 581–592 (2013).
Article ADS CAS PubMed PubMed Central Google Scholar
- Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).
Article ADS CAS PubMed Google Scholar
- Bangasser, B. L. et al. Shifting the optimal stiffness for cell migration. Nat. Commun. 8, 15313 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
- Gong, Z. et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proc. Natl Acad. Sci. USA 115, E2686–E2695 (2018). This study used analytical and Monte Carlo methods to simulate the dynamics of motor clutches (focal adhesions) formed between the cell and a viscoelastic substrate, and found that that intermediate viscosity maximizes cell spreading on soft substrates, while cell spreading is independent of viscosity on stiff substrates, in agreement with experiments on three different material systems.
CAS PubMed PubMed Central Google Scholar
- Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).
Article CAS PubMed Google Scholar
- Bennett, M. et al. Molecular clutch drives cell response to surface viscosity. Proc. Natl Acad. Sci. USA 115, 1192–1197 (2018).
Article ADS CAS PubMed PubMed Central Google Scholar
- Baker, B. M. & Chen, C. S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).
CAS PubMed PubMed Central Google Scholar
- Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).
Article ADS CAS PubMed PubMed Central Google Scholar
- von der Mark, K., Gauss, V., von der Mark, H. & Muller, P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267, 531–532 (1977).
Article ADS PubMed Google Scholar
- Gerecht, S. et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 11298–11303 (2007).
Article ADS CAS PubMed PubMed Central Google Scholar
- Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).
Article CAS PubMed Google Scholar
- Lee, J. Y. et al. YAP-independent mechanotransduction drives breast cancer progression. Nat. Commun. 10, 1848 (2019).
Article ADS PubMed PubMed Central CAS Google Scholar
- Caliari, S. R., Vega, S. L., Kwon, M., Soulas, E. M. & Burdick, J. A. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103, 314–323 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Tito Panciera, A. C. et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogenemediated changes of cell mechanical properties. Nat. Mater. 19, 797–806 (2020).
Article ADS PubMed PubMed Central CAS Google Scholar
- Nam, S., Stowers, R., Lou, J., Xia, Y. & Chaudhuri, O. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Biomaterials 200, 15–24 (2019).
Article CAS PubMed PubMed Central Google Scholar
- Lou, J., Stowers, R., Nam, S., Xia, Y. & Chaudhuri, O. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154, 213–222 (2018).
Article CAS PubMed Google Scholar
- Nam, S. et al. Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4–PI3K/Akt-p27Kip1 signaling axis. Sci. Adv. 5, eaaw6171 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
- Nam, S. & Chaudhuri, O. Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments. Nat. Phys. 14, 621–628 (2018).
Article CAS Google Scholar
- Darnell, M. et al. Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proc. Natl Acad. Sci. USA 115, E8368–E8377 (2018). This work revealed that the transcriptional responses of cells in three-dimensional culture to stress relaxation, matrix stiffness and adhesion ligand density exhibit substantial independent effects and coupling among these properties, demonstrating a clear cell type and context dependence of viscoelasticity sensing.
Article CAS PubMed PubMed Central Google Scholar
- Madl, C. M. et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233–1242 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
- Lee, H. P., Gu, L., Mooney, D. J., Levenston, M. E. & Chaudhuri, O. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat. Mater. 16, 1243–1251 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
- Mohammadi, H., Arora, P. D., Simmons, C. A., Janmey, P. A. & McCulloch, C. A. Inelastic behaviour of collagen networks in cell-matrix interactions and mechanosensation. J. R. Soc. Interface 12, 20141074 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Kim, J. et al. Stress-induced plasticity of dynamic collagen networks. Nat. Commun. 8, 842 (2017).
Article ADS PubMed PubMed Central CAS Google Scholar
- Liu, A. S. et al. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling. Sci. Rep. 6, 33919 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
- Wisdom, K. M. et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9, 4144 (2018). This study demonstrated that mechanical plasticity in nanoporous matrices allows protease-independent migration of cancer cells, with cells using invadopodial protrusions to mechanically open up micrometre-size channels to migrate through.
Article ADS PubMed PubMed Central CAS Google Scholar
- Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer 17, 131–140 (2017).
Article CAS PubMed Google Scholar
- Caiazzo, M. et al. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater. 15, 344–352 (2016).
Article ADS CAS PubMed Google Scholar
- Sabeh, F., Shimizu-Hirota, R. & Weiss, S. J. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185, 11–19 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Harada, T. et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Schultz, K. M., Kyburz, K. A. & Anseth, K. S. Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc. Natl Acad. Sci. USA 112, E3757–E3764 (2015). This study examined how the viscoelastic properties of PEG hydrogels with degradable crosslinks were altered due to cellular degradation during migration of mesenchymal stem cells and found that the cells converted the elastic hydrogel into a viscoelastic fluid.
ADS CAS PubMed PubMed Central Google Scholar
- Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).
Article ADS CAS PubMed PubMed Central Google Scholar
- Lee, H. P., Stowers, R. & Chaudhuri, O. Volume expansion and TRPV4 activation regulate stem cell fate in three-dimensional microenvironments. Nat. Commun. 10, 529 (2019). This study identified the role of cell volume expansion and activation of mechanosensitive ion channels in mediating how mesenchymal stem cells sense matrix viscoelasticity.
Article ADS PubMed PubMed Central CAS Google Scholar
- Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).
Article ADS CAS PubMed Google Scholar
- Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009).
Article ADS CAS PubMed PubMed Central Google Scholar
- Grosskopf, A. K. et al. Viscoplastic matrix materials for embedded 3D printing. ACS Appl. Mater. Interfaces 10, 23353–23361 (2018).
Article CAS PubMed Google Scholar
- Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).
Article ADS CAS PubMed Google Scholar
- Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).
Article CAS PubMed Google Scholar
- Prantil-Baun, R. et al. Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips. Annu. Rev. Pharmacol. Toxicol. 58, 37–64 (2018).
Article CAS PubMed Google Scholar
- Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277 (2015).
Article ADS CAS PubMed PubMed Central Google Scholar
- Darnell, M. et al. Substrate stress-relaxation regulates scaffold remodeling and bone formation in vivo. Adv. Healthc. Mater. 6, 1601185 (2017).
Article CAS Google Scholar
- Kolambkar, Y. M. et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32, 65–74 (2011).
Article CAS PubMed Google Scholar
- Kolambkar, Y. M. et al. Spatiotemporal delivery of bone morphogenetic protein enhances functional repair of segmental bone defects. Bone 49, 485–492 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Lin, X. et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat. Biomed. Eng. 3, 632–643 (2019).
Article CAS PubMed Google Scholar
- Ruvinov, E. & Cohen, S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv. Drug Deliv. Rev. 96, 54–76 (2016).
Article CAS PubMed Google Scholar
- Chhetri, D. K. & Mendelsohn, A. H. Hyaluronic acid for the treatment of vocal fold scars. Curr. Opin. Otolaryngol. Head Neck Surg. 18, 498–502 (2010).
Article PubMed Google Scholar
- Atala, A., Kim, W., Paige, K. T., Vacanti, C. A. & Retik, A. B. Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J. Urol. 152, 641–643 (1994).
Article CAS PubMed Google Scholar
- Boekhoven, J. & Stupp, S. I. 25th anniversary article: supramolecular materials for regenerative medicine. Adv. Mater. 26, 1642–1659 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).
Article ADS CAS PubMed Google Scholar
- Shansky, J., Del Tatto, M., Chromiak, J. & Vandenburgh, H. A simplified method for tissue engineering skeletal muscle organoids in vitro. In Vitro Cell. Dev. Biol. Anim. 33, 659–661 (1997).
Article CAS PubMed Google Scholar
- Balikov, D. A., Neal, E. H. & Lippmann, E. S. Organotypic neurovascular models: past results and future directions. Trends Mol. Med. 26, 273–284 (2019).
Article CAS PubMed Google Scholar
- Prior, N., Inacio, P. & Huch, M. Liver organoids: from basic research to therapeutic applications. Gut 68, 2228–2237 (2019).
Article CAS PubMed Google Scholar
- Alsberg, E. et al. Regulating bone formation via controlled scaffold degradation. J. Dent. Res. 82, 903–908 (2003).
Article CAS PubMed Google Scholar
- Simmons, C. A., Alsberg, E., Hsiong, S., Kim, W. J. & Mooney, D. J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35, 562–569 (2004).
Article CAS PubMed Google Scholar
- Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).
Article ADS CAS PubMed PubMed Central Google Scholar
- Bryant, S. J. & Anseth, K. S. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59, 63–72 (2002).
Article CAS PubMed Google Scholar
- Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019). This study found that mesenchymal stem cells deposit matrix within a day of culture in proteolytically degradable covalently crosslinked or dynamically crosslinked viscoelastic hyaluronic acid hydrogels, and that the deposited proteins mediated mechanotransduction.
Article ADS CAS PubMed PubMed Central Google Scholar
- Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).
Article CAS PubMed Google Scholar
- Cruz-Acuna, R. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19, 1326–1335 (2017). These studies (Gjorevski et al. (2016) and Cruz-Acuna et al. (2017)) demonstrated the use of synthetic covalently crosslinked hydrogels for organoid formation, and identified gel degradability as an important design parameter.
Article CAS PubMed PubMed Central Google Scholar
- Sadtler, K. et al. Divergent immune responses to synthetic and biological scaffolds. Biomaterials 192, 405–415 (2019).
Article CAS PubMed Google Scholar
- Ehrig, S. et al. Surface tension determines tissue shape and growth kinetics. Sci. Adv. 5, eaav9394 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
- Petersen, A. et al. A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat. Commun. 9, 4430 (2018).
Article ADS CAS PubMed PubMed Central Google Scholar
- Jain, N. & Vogel, V. Spatial confinement downsizes the inflammatory response of macrophages. Nat. Mater. 17, 1134–1144 (2018).
Article ADS CAS PubMed PubMed Central Google Scholar
- Reimer, A. et al. Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells. Sci. Rep. 6, 18948 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
- Han, P. et al. Five piconewtons: the difference between osteogenic and adipogenic fate choice in human mesenchymal stem cells. ACS Nano 13, 11129–11143 (2019).
Article CAS PubMed Google Scholar
- Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).
Article ADS CAS PubMed PubMed Central Google Scholar
- Rosales, A. M. & Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1, 15012 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
- Liu, A. P., Chaudhuri, O. & Parekh, S. H. New advances in probing cell-extracellular matrix interactions. Integr. Biol. 9, 383–405 (2017).
Article Google Scholar
- Vining, K. H., Stafford, A. & Mooney, D. J. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Biomaterials 188, 187–197 (2019).
Article CAS PubMed Google Scholar
- Baker, B. M. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14, 1262–1268 (2015).
Article ADS CAS PubMed PubMed Central Google Scholar
- Braunecker, W. A. & Matyjaszewski, K. Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 32, 93–146 (2007).
Article CAS Google Scholar
- Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
- Liu, K. Z., Mihaila, S. M., Rowan, A., Oosterwijk, E. & Kouwer, P. H. J. Synthetic extracellular matrices with nonlinear elasticity regulate cellular organization. Biomacromolecules 20, 826–834 (2019).
Article CAS PubMed PubMed Central Google Scholar
- Wang, Y. M. et al. Biomimetic strain-stiffening self-assembled hydrogels. Angew. Chem. 132, 4860–4864 (2020).
Article ADS Google Scholar
- Wang, Y. F. et al. Architected lattices with adaptive energy absorption. Extreme Mech. Lett. 33, 100557 (2019).
Article Google Scholar
- Davidson, M. D. et al. Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Adv. Mater. 32, 1905719 (2020).
Article CAS Google Scholar
- Shivashankar, G. V. Mechanical regulation of genome architecture and cell-fate decisions. Curr. Opin. Cell Biol. 56, 115–121 (2019).
Article CAS PubMed Google Scholar
- Shah, J. V. & Janmey, P. A. Strain hardening of fibrin gels and plasma clots. Rheol. Acta 36, 262–268 (1997).
Article CAS Google Scholar
- Chan, R. W. Measurements of vocal fold tissue viscoelasticity: approaching the male phonatory frequency range. J. Acoust. Soc. Am. 115, 3161–3170 (2004).
Article ADS PubMed Google Scholar
- Nasseri, S., Bilston, L. E. & Phan-Thien, N. Viscoelastic properties of pig kidney in shear, experimental results and modeling. Rheol. Acta 41, 180–192 (2002).
Article CAS Google Scholar
- Hatami-Marbini, H. Viscoelastic shear properties of the corneal stroma. J. Biomech. 47, 723–728 (2014).
Article PubMed Google Scholar
- Pereira, H. et al. Biomechanical and cellular segmental characterization of human meniscus: building the basis for tissue engineering therapies. Osteoarthritis Cartilage 22, 1271–1281 (2014).
Article CAS PubMed Google Scholar
- Coluccino, L. et al. Anisotropy in the viscoelastic response of knee meniscus cartilage. J. Appl. Biomater. Funct. Mater. 15, e77–e83 (2017).
PubMed Google Scholar
- Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).
Article ADS CAS PubMed Google Scholar
- Jansen, L. E., Birch, N. P., Schiffman, J. D., Crosby, A. J. & Peyton, S. R. Mechanics of intact bone marrow. J. Mech. Behav. Biomed. Mater. 50, 299–307 (2015).
Article PubMed PubMed Central Google Scholar
- Suki, B. & Lutchen, K. R. in Wiley Encyclopedia of Biomedical Engineering (Wiley, 2006).
- Holt, B., Tripathi, A. & Morgan, J. Viscoelastic response of human skin to low magnitude physiologically relevant shear. J. Biomech. 41, 2689–2695 (2008).
Article PubMed PubMed Central Google Scholar
- Barnes, S. C. et al. Viscoelastic properties of human bladder tumours. J. Mech. Behav. Biomed. Mater. 61, 250–257 (2016).
Article CAS PubMed Google Scholar
- Kiss, M. Z., Varghese, T. & Hall, T. J. Viscoelastic characterization of in vitro canine tissue. Phys. Med. Biol. 49, 4207–4218 (2004).
Article PubMed PubMed Central Google Scholar
- Klatt, D. et al. Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography. Biorheology 47, 133–141 (2010).
Article PubMed Google Scholar
- Nicolle, S. & Palierne, J. F. Dehydration effect on the mechanical behaviour of biological soft tissues: observations on kidney tissues. J. Mech. Behav. Biomed. Mater. 3, 630–635 (2010).
Article CAS PubMed Google Scholar
- Nicolle, S., Lounis, M., Willinger, R. & Palierne, J. F. Shear linear behavior of brain tissue over a large frequency range. Biorheology 42, 209–223 (2005).
CAS PubMed Google Scholar
- Hrapko, M., van Dommelen, J. A., Peters, G. W. & Wismans, J. S. The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43, 623–636 (2006).
CAS PubMed Google Scholar
- Netti, P., D’amore, A., Ronca, D., Ambrosio, L. & Nicolais, L. Structure-mechanical properties relationship of natural tendons and ligaments. J. Mater. Sci. Mater. Med. 7, 525–530 (1996).
Article CAS Google Scholar
- Tanaka, E. et al. Dynamic shear properties of the porcine molar periodontal ligament. J. Biomech. 40, 1477–1483 (2007).
Article PubMed Google Scholar
- Tanaka, E. et al. Comparison of dynamic shear properties of the porcine molar and incisor periodontal ligament. Ann. Biomed. Eng. 34, 1917–1923 (2006).
Article PubMed Google Scholar
- Troyer, K. L. & Puttlitz, C. M. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior. Acta Biomater. 7, 700–709 (2011).
Article CAS PubMed Google Scholar
- Fessel, G. & Snedeker, J. G. Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon. Matrix Biol. 28, 503–510 (2009).
Article CAS PubMed Google Scholar
- Nagasawa, K., Noguchi, M., Ikoma, K. & Kubo, T. Static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon. Clin. Biomech. 23, 832–838 (2008).
Article Google Scholar
- Koolstra, J. H., Tanaka, E. & Van Eijden, T. M. Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests. J. Biomech. 40, 2330–2334 (2007).
Article CAS PubMed Google Scholar
- Tanaka, E. et al. Shear properties of the temporomandibular joint disc in relation to compressive and shear strain. J. Dent. Res. 83, 476–479 (2004).
Article CAS PubMed Google Scholar
- Tanaka, E. et al. Dynamic shear behavior of mandibular condylar cartilage is dependent on testing direction. J. Biomech. 41, 1119–1123 (2008).
Article PubMed Google Scholar
- Töyräs, J., Nieminen, M. T., Kroger, H. & Jurvelin, J. S. Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently. Bone 31, 503–507 (2002).
Article PubMed Google Scholar
- Isaksson, H. et al. Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone. J. Biomech. 43, 2410–2417 (2010).
Article PubMed Google Scholar
- Cowin, S. C., Van Buskirk, W. C. & Ashman, R. B. in Handbook of Bioengineering (McGraw-Hill, 1987).
- Les, C. M. et al. Long-term ovariectomy decreases ovine compact bone viscoelasticity. J. Orthop. Res. 23, 869–876 (2005).
Article ADS CAS PubMed Google Scholar
- Polly, B. J., Yuya, P. A., Akhter, M. P., Recker, R. R. & Turner, J. A. Intrinsic material properties of trabecular bone by nanoindentation testing of biopsies taken from healthy women before and after menopause. Calcif. Tissue Int. 90, 286–293 (2012).
Article CAS PubMed Google Scholar
- Abdel-Wahab, A. A., Alam, K. & Silberschmidt, V. V. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. J. Mech. Behav. Biomed. Mater. 4, 807–820 (2011).
Article PubMed Google Scholar
- Purslow, P. P., Wess, T. J. & Hukins, D. W. Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J. Exp. Biol. 201, 135–142 (1998).
Article CAS PubMed Google Scholar
- Parada, G. A. & Zhao, X. H. Ideal reversible polymer networks. Soft Matter 14, 5186–5196 (2018).
Article ADS CAS PubMed Google Scholar
- Tang, S. C. et al. Adaptable fast relaxing boronate-based hydrogels for probing cell-matrix interactions. Adv. Sci. 5, 1800638 (2018).
Article CAS Google Scholar
- Brown, T. E. et al. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials 178, 496–503 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Marozas, I. A., Anseth, K. S. & Cooper-White, J. J. Adaptable boronate ester hydrogels with tunable viscoelastic spectra to probe timescale dependent mechanotransduction. Biomaterials 223, 119430 (2019).
Article CAS PubMed PubMed Central Google Scholar
- Zhao, X. H., Huebsch, N., Mooney, D. J. & Suo, Z. G. Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 107, 063509 (2010).
Article ADS PubMed Central CAS Google Scholar
- Dooling, L. J., Buck, M. E., Zhang, W. B. & Tirrell, D. A. Programming molecular association and viscoelastic behavior in protein networks. Adv. Mater. 28, 4651–4657 (2016).
Article CAS PubMed Google Scholar
- Richardson, B. M., Wilcox, D. G., Randolph, M. A. & Anseth, K. S. Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering. Acta Biomater. 83, 71–82 (2019).
Article CAS PubMed Google Scholar