Commutator (original) (raw)

About DBpedia

En matemàtiques, i més específicament en àlgebra, el commutador dona una indicació de la mesura en què una certa operació binària fracassa a ser commutativa. Hi ha dues definicions diferents de commutador, segons que s'utilitzi en teoria de grups o teoria d'anells.

Property Value
dbo:abstract Komutátor je operátor vyjadřující „míru nekomutativity“ dvou operátorů. Máme-li operátory a , rozumí se obvykle jejich komutátorem operátor , označovaný zkráceně . Komutátor je standardně užívanou mírou nekomutativity, komutují-li totiž a , pak je . Fyzikálně je motivováno zavedení antikomutátoru, který je dán jako a označován nebo . V teorii Lieových algeber je komutátor (také Lieova závorka) jakékoliv bilineární zobrazení kartézského součinu algebry se sebou do téže algebry mající následující vlastnosti: * antisymetrie: * Jacobiho identita Jsou-li prvky algebry reprezentovány operátory, pak tvar splňuje tyto požadavky. (cs) En matemàtiques, i més específicament en àlgebra, el commutador dona una indicació de la mesura en què una certa operació binària fracassa a ser commutativa. Hi ha dues definicions diferents de commutador, segons que s'utilitzi en teoria de grups o teoria d'anells. (ca) المبدل الرياضي في الرياضيات يعطي مؤشرا على مدى فشل عملية ثنائية معينة بأن تكون تبادلية. هناك تعاريف مختلفة تستخدم في إطار نظرية الزمر ونظرية الحلقات. (ar) In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. (en) In der Mathematik misst der Kommutator (lateinisch commutare ‚vertauschen‘), wie sehr zwei Elemente einer Gruppe oder einer assoziativen Algebra das Kommutativgesetz verletzen. (de) Un commutateur est un opérateur introduit en mathématiques et étendu à la mécanique quantique. (fr) Per commutatore, in matematica, si intende una composizione di due elementi di una struttura algebrica, riferita a un'operazione binaria che fornisce un terzo elemento diverso dall'elemento neutro quando i due elementi dati non soddisfano la proprietà commutativa.I commutatori sono ampiamente usati nella teoria dei gruppi, nella teoria degli anelli,nelle algebre di Lie. Nella meccanica quantistica sono usati per formulare il principio di indeterminazione. L'anticommutatore è un operatore usato specialmente in meccanica quantistica che prende in ingresso due operatori. L'anticommutatore tra e è definito come: (it) 数学における交換子(こうかんし、英: commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。 (ja) Komutator – wskaźnik stopnia nieprzemienności pewnego działania dwuargumentowego. Definicje w teorii grup oraz teorii pierścieni różnią się między sobą. (pl) In de hogere algebra geeft een commutator aan, in welke mate de volgorde van twee elementen een rol speelt in het resultaat van een bewerking. (nl) Na matemática, o comutador indica o "quanto" uma operação binária falha em ser comutativa. Diferentes definições são usadas emteoria dos grupos e teoria dos anéis. (pt) 在抽象代数中,一个群的交換子(commutator)或换位子是一个。设g及h 是 群G中的元素,他們的交換子是g −1 h −1 gh,常記為[ g, h ]。只有当g和h符合交换律(即gh = hg)时他们的交换子才是这个群的单位元。 一个群G的全部交换子生成的子群叫做群G的导群,记作D(G)。 (zh) Комутатором та антикомутатором операторів в алгебрі та квантовій механіці називають такі оператори: (uk) Коммутатором операторов и в алгебре, а также квантовой механике называется оператор . В общем случае он не равен нулю.Понятие коммутатора распространяется также на произвольные ассоциативные алгебры (не обязательно операторные). В квантовой механике за коммутатором операторов также закрепилось название квантовая скобка Пуассона. Если коммутатор двух операторов равен нулю, то они называются коммутирующими, иначе — некоммутирующими. (ru)
dbo:wikiPageExternalLink https://archive.org/details/introductiontoel00grif_0 https://books.google.com/books%3Fid=hyHvAAAAMAAJ&q=commutator https://www.researchgate.net/publication/226377308
dbo:wikiPageID 7193 (xsd:integer)
dbo:wikiPageLength 13930 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1121161958 (xsd:integer)
dbo:wikiPageWikiLink dbr:Canonical_commutation_relation dbr:Prentice_Hall dbr:Product_rule dbr:Quantum_mechanics dbr:Moyal_product dbr:Derived_subgroup dbr:Jordan_algebra dbr:Uncertainty_principle dbr:University_of_London dbr:Derivation_(differential_algebra) dbr:Jacobi_identity dbc:Group_theory dbr:Commutative dbr:Mathematics dbr:McGraw_Hill dbr:General_Leibniz_rule dbr:Quotient_group dbr:Clifford_algebra dbr:Endomorphism dbr:Generating_set_of_a_group dbr:Graded_algebra dbr:Conjugate_variables dbr:Anticommutativity dbr:Lie_algebra dbr:Linear_algebra dbr:Commutator_subgroup dbr:Derivation_(abstract_algebra) dbr:Particle_physics dbr:Phase_space dbr:Pincherle_derivative dbr:Subgroup dbr:Baker–Campbell–Hausdorff_formula dbr:Addison-Wesley dbr:Ernst_Witt dbr:Exponential_function dbr:Formal_power_series dbr:Banach_algebra dbr:Nilpotent_group dbr:Ring_theory dbr:Group_(mathematics) dbr:Hadamard's_lemma dbr:Hilbert_space dbr:Adjoint_representation_of_a_Lie_algebra dbr:Ring_(algebra) dbr:Abelian_group dbc:Mathematical_identities dbc:Abstract_algebra dbc:Binary_operations dbr:Bilinear_map dbr:Binary_operation dbr:Dirac_equation dbr:Associative_algebra dbr:Associator dbr:Philip_Hall dbr:Poisson_bracket dbr:Group_theory dbr:Moyal_bracket dbr:Solvable_group dbr:Three_subgroups_lemma dbr:Observable dbr:Ternary_commutator dbr:Centralizer dbr:Conjugate_(group_theory) dbr:Uncertainty_relation
dbp:id p/c023430 (en)
dbp:title Commutator (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:! dbt:About dbt:Authority_control dbt:Citation dbt:Math dbt:Mvar dbt:Reflist dbt:Short_description dbt:Use_shortened_footnotes
dcterms:subject dbc:Group_theory dbc:Mathematical_identities dbc:Abstract_algebra dbc:Binary_operations
rdf:type owl:Thing
rdfs:comment En matemàtiques, i més específicament en àlgebra, el commutador dona una indicació de la mesura en què una certa operació binària fracassa a ser commutativa. Hi ha dues definicions diferents de commutador, segons que s'utilitzi en teoria de grups o teoria d'anells. (ca) المبدل الرياضي في الرياضيات يعطي مؤشرا على مدى فشل عملية ثنائية معينة بأن تكون تبادلية. هناك تعاريف مختلفة تستخدم في إطار نظرية الزمر ونظرية الحلقات. (ar) In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. (en) In der Mathematik misst der Kommutator (lateinisch commutare ‚vertauschen‘), wie sehr zwei Elemente einer Gruppe oder einer assoziativen Algebra das Kommutativgesetz verletzen. (de) Un commutateur est un opérateur introduit en mathématiques et étendu à la mécanique quantique. (fr) 数学における交換子(こうかんし、英: commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。 (ja) Komutator – wskaźnik stopnia nieprzemienności pewnego działania dwuargumentowego. Definicje w teorii grup oraz teorii pierścieni różnią się między sobą. (pl) In de hogere algebra geeft een commutator aan, in welke mate de volgorde van twee elementen een rol speelt in het resultaat van een bewerking. (nl) Na matemática, o comutador indica o "quanto" uma operação binária falha em ser comutativa. Diferentes definições são usadas emteoria dos grupos e teoria dos anéis. (pt) 在抽象代数中,一个群的交換子(commutator)或换位子是一个。设g及h 是 群G中的元素,他們的交換子是g −1 h −1 gh,常記為[ g, h ]。只有当g和h符合交换律(即gh = hg)时他们的交换子才是这个群的单位元。 一个群G的全部交换子生成的子群叫做群G的导群,记作D(G)。 (zh) Комутатором та антикомутатором операторів в алгебрі та квантовій механіці називають такі оператори: (uk) Коммутатором операторов и в алгебре, а также квантовой механике называется оператор . В общем случае он не равен нулю.Понятие коммутатора распространяется также на произвольные ассоциативные алгебры (не обязательно операторные). В квантовой механике за коммутатором операторов также закрепилось название квантовая скобка Пуассона. Если коммутатор двух операторов равен нулю, то они называются коммутирующими, иначе — некоммутирующими. (ru) Komutátor je operátor vyjadřující „míru nekomutativity“ dvou operátorů. Máme-li operátory a , rozumí se obvykle jejich komutátorem operátor , označovaný zkráceně . Komutátor je standardně užívanou mírou nekomutativity, komutují-li totiž a , pak je . Fyzikálně je motivováno zavedení antikomutátoru, který je dán jako a označován nebo . V teorii Lieových algeber je komutátor (také Lieova závorka) jakékoliv bilineární zobrazení kartézského součinu algebry se sebou do téže algebry mající následující vlastnosti: * antisymetrie: * Jacobiho identita (cs) Per commutatore, in matematica, si intende una composizione di due elementi di una struttura algebrica, riferita a un'operazione binaria che fornisce un terzo elemento diverso dall'elemento neutro quando i due elementi dati non soddisfano la proprietà commutativa.I commutatori sono ampiamente usati nella teoria dei gruppi, nella teoria degli anelli,nelle algebre di Lie. Nella meccanica quantistica sono usati per formulare il principio di indeterminazione. (it)
rdfs:label Commutator (en) مبدل رياضي (ar) Commutador (matemàtiques) (ca) Komutátor (algebra) (cs) Kommutator (Mathematik) (de) Commutateur (opérateur) (fr) Commutatore (matematica) (it) 交換子 (ja) Commutator (wiskunde) (nl) Comutador (matemática) (pt) Komutator (matematyka) (pl) Коммутатор (алгебра) (ru) Комутатор (математика) (uk) 交換子 (zh)
owl:sameAs freebase:Commutator wikidata:Commutator dbpedia-ar:Commutator dbpedia-ca:Commutator dbpedia-cs:Commutator dbpedia-da:Commutator dbpedia-de:Commutator dbpedia-fa:Commutator dbpedia-fi:Commutator dbpedia-fr:Commutator dbpedia-he:Commutator dbpedia-it:Commutator dbpedia-ja:Commutator dbpedia-nl:Commutator dbpedia-pl:Commutator dbpedia-pt:Commutator dbpedia-ru:Commutator dbpedia-uk:Commutator dbpedia-vi:Commutator dbpedia-zh:Commutator https://global.dbpedia.org/id/2mjC4 http://d-nb.info/gnd/4164826-2
prov:wasDerivedFrom wikipedia-en:Commutator?oldid=1121161958&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Commutator
is dbo:wikiPageRedirects of dbr:Commutator_(physics) dbr:Commutators dbr:Graded_commutator dbr:Group_commutator dbr:Comutator dbr:Commutation_relation dbr:Commutator_(group_theory) dbr:Commutator_(phyiscs) dbr:Commutator_(ring_theory) dbr:Commutator_bracket dbr:Commutator_relationship dbr:Anti-commutator dbr:Anticommutator
is dbo:wikiPageWikiLink of dbr:Canonical_commutation_relation dbr:Canonical_quantization dbr:Presentation_of_a_group dbr:Probability_amplitude dbr:Product_operator_formalism dbr:Propagator dbr:Quantum_Markov_semigroup dbr:Quantum_harmonic_oscillator dbr:Quantum_limit dbr:Quantum_mechanics dbr:Quantum_noise dbr:Quantum_stochastic_calculus dbr:Quantum_vacuum_state dbr:Quaternion dbr:Rubik's_Cube dbr:Schrödinger_equation dbr:Engel_identity dbr:List_of_equations_in_quantum_mechanics dbr:One-way_quantum_computer dbr:Representation_theory dbr:Symmetry_of_diatomic_molecules dbr:Baryogenesis dbr:Bianchi_classification dbr:Bracket dbr:Anshel–Anshel–Goldfeld_key_exchange dbr:Anticommutative_property dbr:Jordan_map dbr:List_of_mathematical_symbols_by_subject dbr:Pauli_matrices dbr:Pauli–Lubanski_pseudovector dbr:Relativistic_quantum_mechanics dbr:Ricci_calculus dbr:D-module dbr:Uncertainty_principle dbr:Vector_space dbr:Virial_theorem dbr:Virtual_particle dbr:Derivation_(differential_algebra) dbr:Eamonn_O'Brien_(mathematician) dbr:Indra's_Pearls_(book) dbr:Jacobi_identity dbr:Lie_algebra-valued_differential_form dbr:Lie_algebra_representation dbr:Lie_derivative dbr:Lie_group dbr:Lie_theory dbr:List_of_group_theory_topics dbr:Peierls_bracket dbr:Wigner–Araki–Yanase_theorem dbr:Commutative_property dbr:Commutator_(physics) dbr:Commutator_subspace dbr:Commutators dbr:Conformal_symmetry dbr:Cross_product dbr:Analytical_mechanics dbr:Matrix_exponential dbr:Matrix_mechanics dbr:Measurement_in_quantum_mechanics dbr:SNCF_Class_CC_70000 dbr:Gell-Mann_matrices dbr:General_linear_group dbr:Geometric_calculus dbr:Normal_operator dbr:Normal_order dbr:Normal_subgroup dbr:Omega_and_agemo_subgroup dbr:Operator_product_expansion dbr:Superoperator dbr:Operator_theory dbr:QED_vacuum dbr:Yang–Mills_theory dbr:Ehrenfest_theorem dbr:Equations_of_motion dbr:Frobenius_theorem_(differential_topology) dbr:Galilean_transformation dbr:Gluon_field_strength_tensor dbr:Green's_function_(many-body_theory) dbr:Bracket_(mathematics) dbr:Braided_vector_space dbr:NC_(complexity) dbr:Connection_(vector_bundle) dbr:Constant_of_motion dbr:Creation_and_annihilation_operators dbr:Crystal_momentum dbr:Representation_theory_of_SU(2) dbr:Angular_momentum dbr:Lie_algebra dbr:Liouville's_theorem_(Hamiltonian) dbr:Lorentz_transformation dbr:Magnus_expansion dbr:Bogoliubov_transformation dbr:Commutant-associative_algebra dbr:Commutator_collecting_process dbr:Commutator_subgroup dbr:Commuting_matrices dbr:Complete_set_of_commuting_observables dbr:Density_matrix dbr:Zero-point_energy dbr:Hall_word dbr:Hamiltonian_field_theory dbr:Hamiltonian_matrix dbr:Harmonic_tensors dbr:Hopf_algebra dbr:Pancake_(slot_car) dbr:Perfect_group dbr:Pincherle_derivative dbr:Squeezed_coherent_state dbr:Structure_constants dbr:Symplectic_group dbr:Markov_number dbr:Baker–Campbell–Hausdorff_formula dbr:Trace_(linear_algebra) dbr:Two-body_Dirac_equations dbr:Weak_hypercharge dbr:Werner_Heisenberg dbr:Wigner_rotation dbr:Heisenberg_picture dbr:Lax_pair dbr:3D_rotation_group dbr:A._W._Haydon dbr:Dynamical_pictures dbr:EP200 dbr:Fock_state dbr:Angular_momentum_coupling dbr:Baryon_asymmetry dbr:Basil_Hiley dbr:Nikodem_Popławski dbr:Nilpotent_group dbr:Non-associative_algebra dbr:Noncommutative_ring dbr:Novikov–Veselov_equation dbr:Parity_(physics) dbr:Capelli's_identity dbr:Central_series dbr:Centralizer_and_normalizer dbr:Good_quantum_number dbr:History_of_electrochemistry dbr:History_of_quantum_field_theory dbr:Riemann_curvature_tensor dbr:List_of_Lie_groups_topics dbr:Orbital_angular_momentum_of_free_electrons dbr:Pavel_Golubitsky dbr:Ground_state dbr:Group_(mathematics) dbr:Hermitian_matrix dbr:Hilbrand_J._Groenewold dbr:Hiroshi_Enatsu dbr:History_of_Connecticut_industry dbr:Coxeter_group dbr:Tensor_product_of_modules dbr:Wick's_theorem dbr:Abstract_algebra dbr:Charge_(physics) dbr:Joel_Lee_Brenner dbr:Lacida dbr:Biquaternion dbr:Bivector dbr:Bivector_(complex) dbr:Symmetric_algebra dbr:Symmetry_(physics) dbr:Symmetry_in_quantum_mechanics dbr:Coleman–Mandula_theorem dbr:Jaynes–Cummings_model dbr:Tensor_product_of_algebras dbr:Thompson_groups dbr:Time_in_physics dbr:Tits_group dbr:Toeplitz_matrix dbr:Translation_operator_(quantum_mechanics) dbr:Weight_(representation_theory) dbr:Wigner–Weyl_transform dbr:Differential_algebra dbr:Direct_product_of_groups dbr:Associator dbr:Azimuthal_quantum_number dbr:Bol_loop dbr:Burchnall–Chaundy_theory dbr:Philip_Hall dbr:Photon_polarization dbr:Planck_constant dbr:Poisson_bracket dbr:Special_unitary_group dbr:Spin-1/2 dbr:Spin_representation dbr:Spinor dbr:Fidelity_of_quantum_states dbr:Fredholm_module dbr:Free_Lie_algebra dbr:Free_abelian_group dbr:Free_field dbr:Free_group dbr:Identical_particles dbr:Kähler_identities dbr:Octonion dbr:Orthogonal_group dbr:Cartan_matrix dbr:Lie_bracket_of_vector_fields dbr:Moyal_bracket dbr:Majorana_fermion dbr:Special_linear_group dbr:Supersymmetric_quantum_mechanics dbr:Skew-Hermitian_matrix dbr:Skew-symmetric_matrix dbr:Unitary_group dbr:Newman–Penrose_formalism dbr:Pochhammer_contour dbr:Three_subgroups_lemma dbr:Superspace dbr:Commute dbr:Supersymmetry dbr:Rubik's_Cube_group dbr:Triangular_matrix dbr:Manin_matrix dbr:Quasisimple_group dbr:Symmetric_logarithmic_derivative dbr:Moy–Prasad_filtration dbr:Whitehead_product dbr:Parastatistics dbr:Ternary_commutator dbr:Virial_coefficient dbr:Z*_theorem dbr:Two-dimensional_conformal_field_theory dbr:Math_symbol_fencedbrackets dbr:Math_symbol_squarebracket dbr:Ted_Hurley dbr:Graded_commutator dbr:Group_commutator dbr:Comutator dbr:Commutation_relation dbr:Commutator_(group_theory) dbr:Commutator_(phyiscs) dbr:Commutator_(ring_theory) dbr:Commutator_bracket dbr:Commutator_relationship dbr:Anti-commutator dbr:Anticommutator
is gold:hypernym of dbr:Mercury_swivel_commutator
is foaf:primaryTopic of wikipedia-en:Commutator