The manifold roles of protein S-nitrosylation in the life of insulin (original) (raw)
Sonksen, P. & Sonksen, J. Insulin: understanding its action in health and disease. Br. J. Anaesth.85, 69–79 (2000). ArticleCASPubMed Google Scholar
Fu, Z., Gilbert, E. R. & Liu, D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev.9, 25–53 (2013). ArticlePubMedPubMed Central Google Scholar
Bahadoran, Z., Mirmiran, P. & Ghasemi, A. Role of nitric oxide in insulin secretion and glucose metabolism. Trends Endocrinol. Metab.31, 118–130 (2020). ArticleCASPubMed Google Scholar
Shankar, R. R., Wu, Y., Shen, H. Q., Zhu, J. S. & Baron, A. D. Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes49, 684–687 (2000). ArticleCASPubMed Google Scholar
Kurohane Kaneko, Y. & Ishikawa, T. Dual role of nitric oxide in pancreatic β-cells. J. Pharmacol. Sci.123, 295–300 (2013). ArticlePubMed Google Scholar
Perreault, M. & Marette, A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med.7, 1138–1143 (2001). ArticleCASPubMed Google Scholar
Denninger, J. W. & Marletta, M. A. Guanylate cyclase and the ·NO/cGMP signaling pathway. Biochim. Biophys. Acta1411, 334–350 (1999). ArticleCASPubMed Google Scholar
Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol.6, 150–166 (2005). ArticleCASPubMed Google Scholar
Sansbury, B. E. & Hill, B. G. Regulation of obesity and insulin resistance by nitric oxide. Free Radic. Biol. Med.73, 383–399 (2014). ArticleCASPubMed Google Scholar
Li, S. et al. pCysMod: prediction of multiple cysteine modifications based on deep learning framework. Front. Cell Dev. Biol.9, 617366 (2021). ArticlePubMedPubMed Central Google Scholar
Abunimer, A. et al. Single-nucleotide variations in cardiac arrhythmias: prospects for genomics and proteomics based biomarker discovery and diagnostics. Genes (Basel)5, 254–269 (2014). Article Google Scholar
Seth, D. et al. A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol. Cell69, e6 (2018). Article Google Scholar
Stomberski, C. T., Hess, D. T. & Stamler, J. S. Protein S-nitrosylation: determinants of specificity and enzymatic regulation of S-nitrosothiol-based signaling. Antioxid. Redox Signal.30, 1331–1351 (2019). ArticleCASPubMedPubMed Central Google Scholar
Zhou, H. L. et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature565, 96–100 (2019). ArticleCASPubMed Google Scholar
Stomberski, C. T., Zhou, H. L., Wang, L., van den Akker, F. & Stamler, J. S. Molecular recognition of S-nitrosothiol substrate by its cognate protein denitrosylase. J. Biol. Chem.294, 1568–1578 (2019). ArticleCASPubMed Google Scholar
Weiss, M., Steiner, D. F. & Philipson, L. H. Insulin biosynthesis, secretion, structure, and structure-activity relationships (Endotext [Internet]. MDText.com, Inc., 2014).
Komatsu, M., Takei, M., Ishii, H. & Sato, Y. Glucose-stimulated insulin secretion: a newer perspective. J. Diabetes Investig.4, 511–516 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gaisano, H. Y. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes. Metab.19, 115–123 (2017). ArticleCASPubMed Google Scholar
Byrne, M. M. et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J. Clin. Invest.93, 1120–1130 (1994). ArticleCASPubMedPubMed Central Google Scholar
Cherrington, A. D., Sindelar, D., Edgerton, D., Steiner, K. & McGuinness, O. P. Physiological consequences of phasic insulin release in the normal animal. Diabetes51, S103–S108 (2002). ArticleCASPubMed Google Scholar
Smukler, S. R., Tang, L., Wheeler, M. B. & Salapatek, A. M. Exogenous nitric oxide and endogenous glucose-stimulated β-cell nitric oxide augment insulin release. Diabetes51, 3450–3460 (2002). ArticleCASPubMed Google Scholar
Rizzo, M. A. & Piston, D. W. Regulation of β cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J. Cell Biol.161, 243–248 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gonzalez, D. R., Beigi, F., Treuer, A. V. & Hare, J. M. Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc. Natl Acad. Sci. USA104, 20612–20617 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kawano, T. et al. Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol. Pain.5, 12 (2009). ArticlePubMedPubMed Central Google Scholar
Palmer, Z. J. et al. S-nitrosylation of syntaxin 1 at Cys(145) is a regulatory switch controlling Munc18-1 binding. Biochem. J.413, 479–491 (2008). ArticleCASPubMed Google Scholar
Wiseman, D. A., Kalwat, M. A. & Thurmond, D. C. Stimulus-induced S-nitrosylation of syntaxin 4 impacts insulin granule exocytosis. J. Biol. Chem.286, 16344–16354 (2011). ArticleCASPubMedPubMed Central Google Scholar
Matsushita, K. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell115, 139–150 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ferre, T., Riu, E., Bosch, F. & Valera, A. Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J.10, 1213–1218 (1996). ArticleCASPubMed Google Scholar
Tarasov, A., Dusonchet, J. & Ashcroft, F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes53, S113–S122 (2004). ArticleCASPubMed Google Scholar
Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem.274, 305–315 (1999). ArticleCASPubMed Google Scholar
Matschinsky, F. M. Regulation of pancreatic β-cell glucokinase: from basics to therapeutics. Diabetes51, S394–S404 (2002). ArticleCASPubMed Google Scholar
Rizzo, M. A., Magnuson, M. A., Drain, P. F. & Piston, D. W. A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin. J. Biol. Chem.277, 34168–34175 (2002). ArticleCASPubMed Google Scholar
Stubbs, M., Aiston, S. & Agius, L. Subcellular localization, mobility, and kinetic activity of glucokinase in glucose-responsive insulin-secreting cells. Diabetes49, 2048–2055 (2000). ArticleCASPubMed Google Scholar
Ding, S. Y. et al. Naturally occurring glucokinase mutations are associated with defects in posttranslational S-nitrosylation. Mol. Endocrinol.24, 171–177 (2010). ArticleCASPubMed Google Scholar
Markwardt, M. L., Nkobena, A., Ding, S. Y. & Rizzo, M. A. Association with nitric oxide synthase on insulin secretory granules regulates glucokinase protein levels. Mol. Endocrinol.26, 1617–1629 (2012). ArticleCASPubMedPubMed Central Google Scholar
Miller, S. P. et al. Characterization of glucokinase mutations associated with maturity-onset diabetes of the young type 2 (MODY-2): different glucokinase defects lead to a common phenotype. Diabetes48, 1645–1651 (1999). ArticleCASPubMed Google Scholar
Holst, J. J. & Gromada, J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. Endocrinol. Metab.287, E199–E206 (2004). ArticleCASPubMed Google Scholar
Ding, S. Y., Nkobena, A., Kraft, C. A., Markwardt, M. L. & Rizzo, M. A. Glucagon-like peptide 1 stimulates post-translational activation of glucokinase in pancreatic β cells. J. Biol. Chem.286, 16768–16774 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bjorkhaug, L., Molnes, J., Sovik, O., Njolstad, P. R. & Flatmark, T. Allosteric activation of human glucokinase by free polyubiquitin chains and its ubiquitin-dependent cotranslational proteasomal degradation. J. Biol. Chem.282, 22757–22764 (2007). ArticleCASPubMed Google Scholar
Tiedge, M., Richter, T. & Lenzen, S. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch. Biochem. Biophys.375, 251–260 (2000). ArticleCASPubMed Google Scholar
Graves, T. K. & Hinkle, P. M. Ca(2+)-induced Ca(2+) release in the pancreatic β-cell: direct evidence of endoplasmic reticulum Ca(2+) release. Endocrinology144, 3565–3574 (2003). ArticleCASPubMed Google Scholar
Johnson, J. D., Kuang, S., Misler, S. & Polonsky, K. S. Ryanodine receptors in human pancreatic β cells: localization and effects on insulin secretion. FASEB J.18, 878–880 (2004). ArticleCASPubMed Google Scholar
Dixit, S. S. et al. Effects of CaMKII-mediated phosphorylation of ryanodine receptor type 2 on islet calcium handling, insulin secretion, and glucose tolerance. PLoS ONE8, e58655 (2013). ArticleCASPubMedPubMed Central Google Scholar
Santulli, G. et al. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J. Clin. Invest.125, 4316 (2015). ArticlePubMedPubMed Central Google Scholar
Llanos, P. et al. Glucose-dependent insulin secretion in pancreatic β-cell islets from male rats requires Ca2+ release via ROS-stimulated ryanodine receptors. PLoS ONE10, e0129238 (2015). ArticlePubMedPubMed Central Google Scholar
Sun, J. et al. Regulation of the cardiac muscle ryanodine receptor by O(2) tension and S-nitrosoglutathione. Biochemistry47, 13985–13990 (2008). ArticleCASPubMed Google Scholar
Pipatpolkai, T., Usher, S., Stansfeld, P. J. & Ashcroft, F. M. New insights into KATP channel gene mutations and neonatal diabetes mellitus. Nat. Rev. Endocrinol.16, 378–393 (2020). ArticleCASPubMed Google Scholar
Li, N. et al. Structure of a pancreatic ATP-sensitive potassium channel. Cell168, 101–110.e10 (2017). ArticleCASPubMed Google Scholar
Aittoniemi, J. et al. Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos. Trans. R. Soc. Lond. B Biol. Sci.364, 257–267 (2009). ArticleCASPubMed Google Scholar
Aquilante, C. L. Sulfonylurea pharmacogenomics in type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev. Cardiovasc. Ther.8, 359–372 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nichols, C. G. KATP channels as molecular sensors of cellular metabolism. Nature440, 470–476 (2006). ArticleCASPubMed Google Scholar
Jewell, J. L., Oh, E. & Thurmond, D. C. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am. J. Physiol. Regul. Integr. Comp. Physiol.298, R517–R531 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kasai, H., Takahashi, N. & Tokumaru, H. Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol. Rev.92, 1915–1964 (2012). ArticleCASPubMed Google Scholar
Yang, B., Steegmaier, M., Gonzalez, L. C. Jr & Scheller, R. H. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol.148, 247–252 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hardy, O. T., Czech, M. P. & Corvera, S. What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes Obes.19, 81–87 (2012). ArticleCASPubMedPubMed Central Google Scholar
Henningsson, R., Salehi, A. & Lundquist, I. Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. Am. J. Physiol. Cell Physiol.283, C296–C304 (2002). ArticleCASPubMed Google Scholar
Muhammed, S. J., Lundquist, I. & Salehi, A. Pancreatic β-cell dysfunction, expression of iNOS and the effect of phosphodiesterase inhibitors in human pancreatic islets of type 2 diabetes. Diabetes Obes. Metab.14, 1010–1019 (2012). ArticleCASPubMed Google Scholar
Zhao, C., Smith, E. C. & Whiteheart, S. W. Requirements for the catalytic cycle of the N-ethylmaleimide-sensitive factor (NSF). Biochim. Biophys. Acta1823, 159–171 (2012). ArticleCASPubMed Google Scholar
Ito, T., Yamakuchi, M. & Lowenstein, C. J. Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor. J. Biol. Chem.286, 11179–11184 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yazdani, S., Jaldin-Fincati, J. R., Pereira, R. V. S. & Klip, A. Endothelial cell barriers: transport of molecules between blood and tissues. Traffic20, 390–403 (2019). ArticleCASPubMed Google Scholar
Barrett, E. J., Wang, H., Upchurch, C. T. & Liu, Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am. J. Physiol. Endocrinol. Metab.301, E252–E263 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, H., Wang, A. X., Aylor, K. & Barrett, E. J. Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes62, 4030–4042 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wang, H., Wang, A. X., Liu, Z. & Barrett, E. J. Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes57, 540–547 (2008). ArticleCASPubMed Google Scholar
Wang, H., Wang, A. X. & Barrett, E. J. Caveolin-1 is required for vascular endothelial insulin uptake. Am. J. Physiol. Endocrinol. Metab.300, E134–E144 (2011). ArticleCASPubMed Google Scholar
Haddad, D., Al Madhoun, A., Nizam, R. & Al-Mulla, F. Role of caveolin-1 in diabetes and its complications. Oxid. Med. Cell Longev.2020, 9761539 (2020). ArticlePubMedPubMed Central Google Scholar
Cohen, A. W. et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol.285, C222–C235 (2003). ArticleCASPubMed Google Scholar
Chen, Z. et al. Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol. Biol. Cell29, 1190–1202 (2018). ArticlePubMedPubMed Central Google Scholar
Song, H. et al. Release of matrix metalloproteinases-2 and 9 by S-nitrosylated caveolin-1 contributes to degradation of extracellular matrix in tPA-treated hypoxic endothelial cells. PLoS ONE11, e0149269 (2016). ArticlePubMedPubMed Central Google Scholar
Bakhshi, F. R. et al. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension. Pulm. Circ.3, 816–830 (2013). ArticlePubMedPubMed Central Google Scholar
Tang, W. J. Targeting insulin-degrading enzyme to treat type 2 diabetes mellitus. Trends Endocrinol. Metab.27, 24–34 (2016). ArticleCASPubMed Google Scholar
Pivovarova, O., Hohn, A., Grune, T., Pfeiffer, A. F. & Rudovich, N. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer’s disease? Ann. Med.48, 614–624 (2016). ArticleCASPubMed Google Scholar
Farris, W. et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA100, 4162–4167 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wroblewski, V. J., Masnyk, M., Khambatta, S. S. & Becker, G. W. Mechanisms involved in degradation of human insulin by cytosolic fractions of human, monkey, and rat liver. Diabetes41, 539–547 (1992). ArticleCASPubMed Google Scholar
Fakhrai-Rad, H. et al. Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats. Hum. Mol. Genet.9, 2149–2158 (2000). ArticleCASPubMed Google Scholar
Ralat, L. A., Ren, M., Schilling, A. B. & Tang, W. J. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation. J. Biol. Chem.284, 34005–34018 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cordes, C. M., Bennett, R. G., Siford, G. L. & Hamel, F. G. Nitric oxide inhibits insulin-degrading enzyme activity and function through S-nitrosylation. Biochem. Pharmacol.77, 1064–1073 (2009). ArticleCASPubMed Google Scholar
Akhtar, M. W. et al. Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nat. Commun.7, 10242 (2016). ArticleCASPubMedPubMed Central Google Scholar
Ward, C. W. & Lawrence, M. C. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. Bioessays31, 422–434 (2009). ArticleCASPubMed Google Scholar
Kadowaki, T., Ueki, K., Yamauchi, T. & Kubota, N. SnapShot: insulin signaling pathways. Cell148, 624.e1 (2012). Google Scholar
Kadowaki, T., Kubota, N., Ueki, K. & Yamauchi, T. SnapShot: physiology of insulin signaling. Cell148, 834–834.e1 (2012). ArticleCASPubMed Google Scholar
Duplain, H. et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation104, 342–345 (2001). ArticleCASPubMed Google Scholar
Vecoli, C. et al. Partial deletion of eNOS gene causes hyperinsulinemic state, unbalance of cardiac insulin signaling pathways and coronary dysfunction independently of high fat diet. PLoS One9, e104156 (2014). ArticlePubMedPubMed Central Google Scholar
Nakagawa, T. et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol.18, 539–550 (2007). ArticleCASPubMed Google Scholar
Kashyap, S. R. et al. Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. J. Clin. Endocrinol. Metab.90, 1100–1105 (2005). ArticleCASPubMed Google Scholar
Hsu, M. F. & Meng, T. C. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J. Biol. Chem.285, 7919–7928 (2010). ArticleCASPubMedPubMed Central Google Scholar
Barrett, D. M. et al. Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J. Biol. Chem.280, 14453–14461 (2005). ArticleCASPubMed Google Scholar
Numajiri, N. et al. On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc. Natl Acad. Sci. USA108, 10349–10354 (2011). ArticleCASPubMedPubMed Central Google Scholar
Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science283, 1544–1548 (1999). ArticleCASPubMed Google Scholar
Chen, Y. Y. et al. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J. Biol. Chem.283, 35265–35272 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chen, C. Y., Chen, J., He, L. & Stiles, B. L. PTEN: tumor suppressor and metabolic regulator. Front. Endocrinol.9, 338 (2018). Article Google Scholar
Kurlawalla-Martinez, C. et al. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol. Cell Biol.25, 2498–2510 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pei, D. S., Sun, Y. F. & Song, Y. J. S-nitrosylation of PTEN invovled in ischemic brain injury in rat hippocampal CA1 region. Neurochem. Res.34, 1507–1512 (2009). ArticleCASPubMed Google Scholar
Zhu, L. et al. NOS1 S-nitrosylates PTEN and inhibits autophagy in nasopharyngeal carcinoma cells. Cell Death Discov.3, 17011 (2017). ArticlePubMedPubMed Central Google Scholar
Kwak, Y. D. et al. NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol. Neurodegener.5, 49 (2010). ArticlePubMedPubMed Central Google Scholar
Choi, M. S. et al. Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in Parkinson’s disease models. J. Neurosci.34, 15123–15131 (2014). ArticlePubMedPubMed Central Google Scholar
Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science299, 256–259 (2003). ArticleCASPubMed Google Scholar
Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature409, 92–97 (2001). ArticleCASPubMed Google Scholar
Montagnani, M., Chen, H., Barr, V. A. & Quon, M. J. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J. Biol. Chem.276, 30392–30398 (2001). ArticleCASPubMed Google Scholar
Muoio, D. M. & Newgard, C. B. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol.9, 193–205 (2008). ArticleCASPubMed Google Scholar
Cerf, M. E. Beta cell dysfunction and insulin resistance. Front. Endocrinol.4, 37 (2013). Article Google Scholar
Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol.12, 15–28 (2016). ArticleCASPubMed Google Scholar
Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature444, 840–846 (2006). ArticleCASPubMed Google Scholar
Kim, J. H., Bachmann, R. A. & Chen, J. Interleukin-6 and insulin resistance. Vitam. Horm.80, 613–633 (2009). ArticleCASPubMed Google Scholar
Salvado, L., Palomer, X., Barroso, E. & Vazquez-Carrera, M. Targeting endoplasmic reticulum stress in insulin resistance. Trends Endocrinol. Metab.26, 438–448 (2015). ArticleCASPubMed Google Scholar
Boucher, J., Kleinridders, A. & Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol.6, a009191 (2014). ArticlePubMedPubMed Central Google Scholar
Copps, K. D. & White, M. F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia55, 2565–2582 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yang, L. et al. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science349, 500–506 (2015). ArticleCASPubMedPubMed Central Google Scholar
Katashima, C. K., Silva, V. R. R., Lenhare, L., Marin, R. M. & Carvalheira, J. B. C. iNOS promotes hypothalamic insulin resistance associated with deregulation of energy balance and obesity in rodents. Sci. Rep.7, 9265 (2017). ArticlePubMedPubMed Central Google Scholar
Shinozaki, S. et al. Liver-specific inducible nitric-oxide synthase expression is sufficient to cause hepatic insulin resistance and mild hyperglycemia in mice. J. Biol. Chem.286, 34959–34975 (2011). ArticleCASPubMedPubMed Central Google Scholar
Carvalho-Filho, M. A. et al. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes54, 959–967 (2005). ArticleCASPubMed Google Scholar
Kaneki, M., Shimizu, N., Yamada, D. & Chang, K. Nitrosative stress and pathogenesis of insulin resistance. Antioxid. Redox Signal.9, 319–329 (2007). ArticleCASPubMed Google Scholar
Yasukawa, T. et al. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J. Biol. Chem.280, 7511–7518 (2005). ArticleCASPubMed Google Scholar
Carvalho-Filho, M. A., Ueno, M., Carvalheira, J. B., Velloso, L. A. & Saad, M. J. Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRβ/IRS-1 and Akt and insulin resistance in muscle of mice. Am. J. Physiol. Endocrinol. Metab.291, E476–E482 (2006). ArticleCASPubMed Google Scholar
Ropelle, E. R. et al. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes62, 466–470 (2013). ArticleCASPubMedPubMed Central Google Scholar
Crunfli, F. et al. NO-dependent Akt Inactivation by S-nitrosylation as a possible mechanism of STZ-induced neuronal insulin resistance. J. Alzheimers Dis.65, 1427–1443 (2018). ArticleCASPubMed Google Scholar
Wu, M. et al. Aging-associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention. PLoS ONE4, e6430 (2009). ArticlePubMedPubMed Central Google Scholar
Lee, Y. S. et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell157, 1339–1352 (2014). ArticleCASPubMedPubMed Central Google Scholar
Carvalho-Filho, M. A. et al. Aspirin attenuates insulin resistance in muscle of diet-induced obese rats by inhibiting inducible nitric oxide synthase production and S-nitrosylation of IRβ/IRS-1 and Akt. Diabetologia52, 2425–2434 (2009). ArticleCASPubMed Google Scholar
Tsuzuki, T. et al. Voluntary exercise can ameliorate insulin resistance by reducing iNOS-mediated S-nitrosylation of Akt in the liver in obese rats. PLoS ONE10, e0132029 (2015). ArticlePubMedPubMed Central Google Scholar
Pauli, J. R. et al. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats. J. Physiol.586, 659–671 (2008). ArticleCASPubMed Google Scholar
Potenza, M. A. et al. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am. J. Physiol. Heart Circ. Physiol.289, H813–H822 (2005). ArticleCASPubMed Google Scholar
Montagnani, M. et al. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J. Biol. Chem.277, 1794–1799 (2002). ArticleCASPubMed Google Scholar
Mukai, Y., Wang, C. Y., Rikitake, Y. & Liao, J. K. Phosphatidylinositol 3-kinase/protein kinase Akt negatively regulates plasminogen activator inhibitor type 1 expression in vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol.292, H1937–H1942 (2007). ArticleCASPubMed Google Scholar
Patel, P. & Woodgett, J. R. Glycogen synthase kinase 3: a kinase for all pathways? Curr. Top. Dev. Biol.123, 277–302 (2017). ArticleCASPubMed Google Scholar
Wang, S. B. et al. Protein S-nitrosylation controls glycogen synthase kinase 3β function independent of its phosphorylation state. Circ. Res.122, 1517–1531 (2018). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Rivera, E. et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res.74, 1067–1078 (2014). ArticleCASPubMedPubMed Central Google Scholar
DiPilato, L. M. et al. The role of PDE3B phosphorylation in the inhibition of lipolysis by insulin. Mol. Cell Biol.35, 2752–2760 (2015). ArticleCASPubMedPubMed Central Google Scholar
Scherer, P. E. The multifaceted roles of adipose tissue–therapeutic targets for diabetes and beyond: the 2015 Banting Lecture. Diabetes65, 1452–1461 (2016). ArticleCASPubMedPubMed Central Google Scholar
Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARɣ2, a lipid-activated transcription factor. Cell79, 1147–1156 (1994). ArticleCASPubMed Google Scholar
Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARɣ. Annu. Rev. Biochem.77, 289–312 (2008). ArticleCASPubMed Google Scholar
Yin, R. et al. Pro-inflammatory macrophages suppress PPARɣ activity in adipocytes via S-nitrosylation. Free Radic. Biol. Med.89, 895–905 (2015). ArticleCASPubMed Google Scholar
Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol.9, 367–377 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ovadia, H. et al. Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity. J. Biol. Chem.286, 30433–30443 (2011). ArticleCASPubMedPubMed Central Google Scholar
Choi, Y. H. et al. Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J. Clin. Invest.116, 3240–3251 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gauglitz, G. G. et al. Post-burn hepatic insulin resistance is associated with endoplasmic reticulum (ER) stress. Shock33, 299–305 (2010). ArticleCASPubMed Google Scholar
Nakazawa, H. et al. iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: possible involvement of Sirt1 S-nitrosylation-mediated acetylation of p65 NF-κB and p53. PLoS ONE12, e0170391 (2017). ArticlePubMedPubMed Central Google Scholar
Shinozaki, S. et al. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci. Signal.7, ra106 (2014). ArticlePubMedPubMed Central Google Scholar
Wang, R. H. et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest.121, 4477–4490 (2011). ArticleCASPubMedPubMed Central Google Scholar
Poitout, V. et al. Glucolipotoxicity of the pancreatic beta cell. Biochim. Biophys. Acta1801, 289–298 (2010). ArticleCASPubMed Google Scholar
Ye, R., Onodera, T. & Scherer, P. E. Lipotoxicity and β cell maintenance in obesity and type 2 diabetes. J. Endocr. Soc.3, 617–631 (2019). ArticleCASPubMedPubMed Central Google Scholar
Heimann, E. et al. Expression and regulation of cyclic nucleotide phosphodiesterases in human and rat pancreatic islets. PLoS ONE5, e14191 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dubois, M. et al. Expression of peroxisome proliferator-activated receptor ɣ (PPARɣ) in normal human pancreatic islet cells. Diabetologia43, 1165–1169 (2000). ArticleCASPubMed Google Scholar
Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol.4, e31 (2006). ArticlePubMed Google Scholar
Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science334, 1081–1086 (2011). ArticleCASPubMed Google Scholar
Higuchi-Sanabria, R., Frankino, P. A., Paul, J. W. 3rd, Tronnes, S. U. & Dillin, A. A futile battle? Protein quality control and the stress of aging. Dev. Cell44, 139–163 (2018). ArticleCASPubMedPubMed Central Google Scholar
Volpi, V. G., Touvier, T. & D’Antonio, M. Endoplasmic reticulum protein quality control failure in myelin disorders. Front. Mol. Neurosci.9, 162 (2016). CASPubMed Google Scholar
Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol.13, 89–102 (2012). ArticleCASPubMed Google Scholar
Anholt, R. R. & Carbone, M. A. A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends Mol. Med.19, 586–593 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ghosh, R., Colon-Negron, K. & Papa, F. R. Endoplasmic reticulum stress, degeneration of pancreatic islet β-cells, and therapeutic modulation of the unfolded protein response in diabetes. Mol. Metab.27S, S60–S68 (2019). ArticlePubMed Google Scholar
Matus, S., Glimcher, L. H. & Hetz, C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr. Opin. Cell Biol.23, 239–252 (2011). ArticleCASPubMed Google Scholar
Ren, J., Bi, Y., Sowers, J. R., Hetz, C. & Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol.18, 499–521 (2021). ArticlePubMed Google Scholar
Nakato, R. et al. Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Sci. Rep.5, 14812 (2015). ArticleCASPubMedPubMed Central Google Scholar
Fonseca, S. G., Burcin, M., Gromada, J. & Urano, F. Endoplasmic reticulum stress in β-cells and development of diabetes. Curr. Opin. Pharmacol.9, 763–770 (2009). ArticleCASPubMedPubMed Central Google Scholar
Huang, C. J. et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes56, 2016–2027 (2007). ArticleCASPubMed Google Scholar
Zhang, L., Lai, E., Teodoro, T. & Volchuk, A. GRP78, but not protein-disulfide isomerase, partially reverses hyperglycemia-induced inhibition of insulin synthesis and secretion in pancreatic β-cells. J. Biol. Chem.284, 5289–5298 (2009). ArticleCASPubMed Google Scholar
Jang, I. et al. PDIA1/P4HB is required for efficient proinsulin maturation and β cell health in response to diet induced obesity. eLife8, e44528 (2019). ArticleCASPubMedPubMed Central Google Scholar
Wilkinson, B. & Gilbert, H. F. Protein disulfide isomerase. Biochim. Biophys. Acta1699, 35–44 (2004). ArticleCASPubMed Google Scholar
Wadham, C., Parker, A., Wang, L. & Xia, P. High glucose attenuates protein S-nitrosylation in endothelial cells: role of oxidative stress. Diabetes56, 2715–2721 (2007). ArticleCASPubMed Google Scholar
Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature441, 513–517 (2006). ArticleCASPubMed Google Scholar
Hu, Y. et al. Endoplasmic reticulum-associated degradation (ERAD) has a critical role in supporting glucose-stimulated insulin secretion in pancreatic β-cells. Diabetes68, 733–746 (2019). ArticleCASPubMed Google Scholar
Lopata, A., Kniss, A., Lohr, F., Rogov, V. V. & Dotsch, V. Ubiquitination in the ERAD process. Int. J. Mol. Sci.21, 5369 (2020). ArticleCASPubMed Central Google Scholar
Azzam, S. K. et al. Genetic associations with diabetic retinopathy and coronary artery disease in Emirati patients with type-2 diabetes mellitus. Front. Endocrinol.10, 283 (2019). Article Google Scholar
Fujikawa, K. et al. S-Nitrosylation at the active site decreases the ubiquitin-conjugating activity of ubiquitin-conjugating enzyme E2 D1 (UBE2D1), an ERAD-associated protein. Biochem. Biophys. Res. Commun.524, 910–915 (2020). ArticleCASPubMed Google Scholar
Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med.368, 1845–1846 (2013). ArticleCASPubMed Google Scholar
Watada, H. & Fujitani, Y. Minireview: Autophagy in pancreatic β-cells and its implication in diabetes. Mol. Endocrinol.29, 338–348 (2015). ArticleCASPubMedPubMed Central Google Scholar
Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab.11, 467–478 (2010). ArticleCASPubMedPubMed Central Google Scholar
Arai, C. et al. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in mice with established obesity. J. Nutr. Sci. Vitaminol.59, 393–401 (2013). ArticleCASPubMed Google Scholar
Qian, Q. et al. S-Nitrosoglutathione reductase dysfunction contributes to obesity-associated hepatic insulin resistance via regulating autophagy. Diabetes67, 193–207 (2018). ArticleCASPubMed Google Scholar
Liu, L. et al. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell116, 617–628 (2004). ArticleCASPubMed Google Scholar
Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab.8, 325–332 (2008). ArticleCASPubMed Google Scholar
Masini, M. et al. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia52, 1083–1086 (2009). ArticleCASPubMed Google Scholar
Wright, C., Iyer, A. K., Kulkarni, Y. & Azad, N. S-Nitrosylation of Bcl-2 negatively affects autophagy in lung epithelial cells. J. Cell Biochem.117, 521–532 (2016). ArticleCASPubMedPubMed Central Google Scholar
Montagna, C. et al. To eat, or NOt to eat: S-nitrosylation signaling in autophagy. FEBS J.283, 3857–3869 (2016). ArticleCASPubMed Google Scholar
Luchsinger, J. A., Tang, M. X., Shea, S. & Mayeux, R. Hyperinsulinemia and risk of Alzheimer disease. Neurology63, 1187–1192 (2004). ArticlePubMed Google Scholar
Sergi, D., Renaud, J., Simola, N. & Martinoli, M. G. Diabetes, a contemporary risk for Parkinson’s disease: epidemiological and cellular evidences. Front. Aging Neurosci.11, 302 (2019). ArticleCASPubMedPubMed Central Google Scholar
Lee, S., Tong, M., Hang, S., Deochand, C. & de la Monte, S. CSF and brain indices of insulin resistance, oxidative stress and neuro-inflammation in early versus late Alzheimer’s disease. J. Alzheimers Dis. Parkinsonism3, 128 (2013). PubMedPubMed Central Google Scholar
de la Monte, S. M. & Wands, J. R. Alzheimer’s disease is type 3 diabetes–evidence reviewed. J. Diabetes Sci. Technol.2, 1101–1113 (2008). ArticlePubMedPubMed Central Google Scholar