Standard deviation (original) (raw)

About DBpedia

標準偏差(ひょうじゅんへんさ、(英: standard deviation, SD)とは、データや確率変数の、平均値からの散らばり具合(ばらつき)を表す指標の一つである。偏差ベクトルと、値が標準偏差のみであるベクトルは、ユークリッドノルムが等しくなる。 標準偏差を2乗したのが分散であり、従って、標準偏差は分散の非負の平方根である。標準偏差が 0 であることは、データの値が全て等しいことと同値である。 母集団や確率変数の標準偏差を σ で、標本の標準偏差を s で表すことがある。 二乗平均平方根 (RMS) を用いると、標準偏差は偏差の二乗平均平方根に等しくなる。

thumbnail

Property Value
dbo:abstract La desviació tipus (σ o S), també coneguda com a desviació estàndard o desviació típica i abreviada Desv, SD o StDev (de l'anglès Standard Deviation) és una mesura de variabilitat o diversitat que s'usa en estadística i teoria de la probabilitat. Mostra quanta variació o "dispersió" hi ha respecte a la mitjana. Una desviació tipus baixa indica que els punts de dades tendeixen a ser propers a la mitjana, mentre que una desviació tipus alta indica que les dades s'estenen al llarg d'un gran rang de valors. Tècnicament, la desviació estàndard d'una població estadística, conjunt de dades o distribució de probabilitat és l'arrel quadrada de la seva variància. És algebraicament més simple tot i que menys robusta que la desviació mitjana absoluta. Una propietat útil de la desviació tipus és que, a diferència de la variància, està expressada en les mateixes unitats que les de les dades. A part d'usar-se per expressar la variabilitat d'una població, la desviació estàndard també s'usa per mesurar la confiança en conclusions estadístiques. Per exemple, el marge d'error en una enquesta de dades es determina calculant la desviació estàndard esperada dels resultats si la mateixa enquesta fos duta a terme múltiples vegades. El marge d'error és normalment cap al doble de la desviació estàndard: el radi d'un interval de confiança al 95%. En ciència, els investigadors solen donar la desviació estàndard de les dades experimentals. També és important en finances, en les quals la desviació estàndard de la d'una inversió econòmica és la mesura de la volatilitat d'aquesta. Quan la desviació estàndard es refereix a una distribució de probabilitats, una variable aleatòria o una població se l'anomena desviació estàndard poblacional i es representa amb la lletra σ. Quan es refereix a un conjunt de dades (mostra) se l'anomena desviació estàndard mostral o estimador de la desviació estàndard, ja que s'empra com a estimador de la desviació estàndard poblacional, i es representa per la lletra S. (ca) Směrodatná odchylka, značená řeckým písmenem σ, je v teorii pravděpodobnosti a statistice často používanou mírou statistické variability. Jedná se o odmocninu z rozptylu náhodné veličiny: kde je náhodná veličina, její rozptyl a její střední hodnota. Směrodatná odchylka vypovídá o tom, nakolik se od sebe navzájem typicky liší jednotlivé případy v souboru zkoumaných hodnot. Je-li malá, jsou si prvky souboru většinou navzájem podobné, a naopak velká směrodatná odchylka signalizuje velké vzájemné odlišnosti. Na základě znalosti distribuční funkce rozdělení nebo pomocí Čebyševovy nerovnosti lze odhadovat, jak daleko jsou hodnoty náhodné veličiny typicky vzdálené od sebe navzájem nebo od střední hodnoty. Častou úlohou matematické statistiky je odhad směrodatné odchylky náhodné veličiny s neznámým rozdělením naměřené na výběru populace. Tento odhad se pak nazývá výběrová směrodatná odchylka a označuje s. Výběrová směrodatná odchylka je charakteristikou proměnlivosti (variability) statistického souboru. Známe-li střední hodnotu jinak neznámého rozdělení naměřených dat, výběrová směrodatná odchylka se počítá jako kvadratický průměr odchylek hodnot znaku od střední hodnoty. V častějším případě, kdy střední hodnota rozdělení není známa a je odhadnuta aritmetickým průměrem, se používá vzorec nebo jeho ekvivalenty (přičemž je počet měření, naměřené hodnoty a jejich aritmetický průměr). Koncept směrodatné odchylky se často používá i při analýze výběrových odhadů: Směrodatná odchylka odhadované veličiny se nazývá směrodatná chyba a používá se pro stanovení konfidenčního intervalu této veličiny. Směrodatná odchylka (podobně jako rozptyl, střední hodnota a jiné momenty) není definována obecně u všech náhodných veličin, například u Cauchyho rozdělení ji stanovit nemůžeme a její odhady na základě měření cauchyovsky rozdělené náhodné veličiny nebudou stabilní. To si lze představit tak, že směrodatná odchylka takové náhodně veličiny je nekonečně veliká. (cs) في الإحصاء ونظرية الاحتمالات، يعتبر الانحراف المعياري (بالإنجليزية: Standard deviation)‏ القيمة الأكثر استخداما من بين مقاييس التشتت الإحصائي لقياس مدى التبعثر الإحصائي، أي أنه يدل على مدى امتداد مجالات القيم ضمن مجموعة البيانات الإحصائية. عادة ما يرمز إلى الانحراف المعياري بالحرف الإغريقي الصغير σ. والتباين وهو معدل مربعات انحرافات العلامات في التوزيع عن الوسط الحسابي. ويكون الانحراف المعياري عندها الجذر التربيعي للتباين بالنسبة لمجموعة البيانات الإحصائية. يتأثر التباين أو الانحراف المعياري بالقيم المتباعدة أو المتطرفة ولكنه لا يتأثر كثيرا بالتغيرات التي تطرأ على العينة، كما أنهما يرتبطان بالوسط الحسابي للتوزيع، بمعنى إن التشتت الذي نعبر عنه بالتباين أو الانحراف المعياري ينسب إلى الوسط الحسابي وليس لأي نقطة أخرى في التوزيع. (ar) Στη στατιστική, η τυπική απόκλιση (SD, εκπροσωπούμενη επίσης από το ελληνικό γράμμα σίγμα σ ή s) είναι ένα μέτρο που χρησιμοποιείται για να υπολογιστεί το ποσό της μεταβολής ή της διασποράς ενός συνόλου τιμών δεδομένων. Μια χαμηλή τυπική απόκλιση υποδηλώνει ότι τα σημεία των δεδομένων τείνουν να είναι κοντά στο μέσο όρο (που ονομάζεται επίσης η αναμενόμενη τιμή) του συνόλου, ενώ μία υψηλή τυπική απόκλιση υποδεικνύει ότι τα στοιχεία απλώνονται πάνω από ένα ευρύτερο φάσμα των τιμών. Η τυπική απόκλιση μιας τυχαίας μεταβλητής, ενός στατιστικού πληθυσμού, ενός συνόλου δεδομένων, ή της κατανομής πιθανότητας είναι η τετραγωνική ρίζα της διακύμανσης της. Είναι αλγεβρικά απλούστερη, αν και στην πράξη λιγότερο ισχυρή από τη . Μία χρήσιμη ιδιότητα της τυπικής απόκλισης είναι ότι, σε αντίθεση με την διακύμανση, εκφράζεται στις ίδιες μονάδες με τα δεδομένα. Υπάρχουν επίσης άλλα μέτρα απόκλισης από τον κανόνα, συμπεριλαμβανομένων της , η οποία παρέχει διαφορετικές μαθηματικές ιδιότητες από την τυπική απόκλιση. Εκτός από την έκφραση της μεταβλητότητας του πληθυσμού, η τυπική απόκλιση συνήθως χρησιμοποιείται για τη μέτρηση της εμπιστοσύνης στα στατιστικά συμπεράσματα. Για παράδειγμα, το περιθώριο λάθους σε δεδομένα δημοσκοπήσεων προσδιορίζεται με τον υπολογισμό της αναμενόμενης τυπικής απόκλισης στα αποτελέσματα, αν η ίδια δημοσκόπηση έπρεπε να διεξαχθεί πολλές φορές. Αυτή η εξαγωγή της τυπικής απόκλισης συχνά αποκαλείται «τυπικό σφάλμα» της εκτίμησης ή «τυπικό σφάλμα της μέσης τιμής» όταν αναφέρεται σε μια μέση τιμή. Υπολογίζεται ως η τυπική απόκλιση όλων των μέσων τιμών που θα υπολογίζεται από τον εν λόγω πληθυσμό, εάν καταρτίστει ένας άπειρος αριθμός δειγμάτων και μια μέση τιμή για κάθε δείγμα που υπολογίζεται. Είναι πολύ σημαντικό να σημειωθεί ότι η τυπική απόκλιση ενός πληθυσμού και το τυπικό σφάλμα μιας στατιστικής που προέρχεται από τον εν λόγω πληθυσμό (όπως τη μέση τιμή) είναι αρκετά διαφορετικές αλλά σχετικές (σε σχέση με το αντίστροφο της τετραγωνικής ρίζας του αριθμού των παρατηρήσεων) . Το αναφερόμενο περιθώριο λάθους σε μια δημοσκόπηση υπολογίζεται από το τυπικό σφάλμα της μέσης τιμής (ή εναλλακτικά από το γινόμενο της τυπικής απόκλισης του πληθυσμού και του αντίστροφου της τετραγωνικής ρίζας του μεγέθους του δείγματος, το οποίο είναι το ίδιο πράγμα) και είναι τυπικά περίπου διπλάσια της τυπικής απόκλισης-του μισού πλάτους ενός 95 τοις εκατό. Στην επιστήμη, οι ερευνητές συνήθως αναφέρουν την τυπική απόκλιση των πειραματικών δεδομένων, και μόνο αποτελέσματα που πέφτουν πολύ μακρύτερα από δύο τυπικές αποκλίσεις μακριά από ό,τι θα αναμενόταν θεωρούνται στατιστικά σημαντικές- κανονικό τυχαίο σφάλμα ή διακύμανση των μετρήσεων με αυτό τον τρόπο διακρίνονται από τυχαίες μεταβολές. Η τυπική απόκλιση είναι επίσης σημαντική στα οικονομικά, όπου η τυπική απόκλιση στο της επένδυσης είναι ένα μέτρο της της επένδυσης. Όταν μόνο ένα δείγμα των δεδομένων από έναν πληθυσμό είναι διαθέσιμο, ο όρος τυπική απόκλιση του δείγματος ή δείγμα τυπικής απόκλισης μπορεί να αναφέρεται είτε στην ανωτέρω ποσότητα, όπως εφαρμόζεται στα εν λόγω δεδομένα είτε σε μία τροποποιημένη ποσότητα που είναι μια καλύτερη εκτίμηση του πληθυσμού της τυπικής απόκλισης (η τυπική απόκλιση του συνόλου του πληθυσμού). (el) En la statistiko, la norma diferenco aŭ norma devio estas mezuro por la aranĝo de hazardaj variabloj ĉirkaŭ averaĝo. Por hazarda variablo ĝi definiĝas kiel la pozitiva kvadrata radiko el ties varianco kaj skribiĝas .La varianco de hazarda variablo estas la centrigita momanto de dua ordo el la respektiva probabla distribuo, la atendata valoro la unua momanto. Se ekzistas eksperimenta serio de la longeco , la empiria averaĝo kaj la empiria norma diferenco estas la plej gravaj mezuroj por priskribo de la ecoj de la eksperimenta serio. Kiel mallongigo krom la antaŭvidita signo (sigma) ofte uziĝas la litero s aŭ la kombino SD. En la aplikata statistiko ofte uziĝas mallonga formulo laŭ la ekzemplo „Ø 21 ± 4“, kio signifas "averaĝo 21 kaj norma diferenco 4". (eo) Probabilitate teorian eta estatistikan, desbideratze estandarra edo desbideratze tipikoa aldagai kuantitatibo bati buruzko datu-multzoen eta probabilitate-banakuntzen sakabanatze neurri absolutu bat da. Jatorrian eta datu-multzo baterako, datu bakoitza batezbesteko aritmetiko sinpletik batez beste zenbat desbideratzen den adierazten du. Horrela, desbideratze estandarra batezbesteko aritmetiko sinplearen adierazgarritasun-neurria da: zenbat eta handiagoa izan, datuak orokorrean batezbestekotik orduan eta gehiago desbideratzen dira, eta beraz, batezbestekoak adierazgarritasuna galtzen du. Beste alde batetik, bariantza desbideratze estandarraren karratua da. Biak ala biak dira estatistikan gehien erabiltzen diren sakabanatze neurriak, bereziki euren propietate matematikoengatik. Hala ere, datu multzo desberdinen sakabanatze-mailak alderatzeko erabili behar denean, dagokion sakabanatze neurri erlatiboa hobesten da, aldakortasun koefizientea hain zuzen, desbideratze estandarra zati batezbestekoa eginez kalkulatzen dena. (eu) En estadística, la desviación típica (también conocida como desviación estándar y desvío típico y representada de manera abreviada por la letra griega minúscula sigma σ o la letra latina s, así como por las siglas SD (de standard deviation, en algunos textos traducidos del inglés)) es una medida que se utiliza para cuantificar la variación o la dispersión de un conjunto de datos numéricos.​ Una desviación estándar baja indica que la mayor parte de los datos de una muestra tienden a estar agrupados cerca de su media (también denominada el valor esperado), mientras que una desviación estándar alta indica que los datos se extienden sobre un rango de valores más amplio. (es) In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range. Standard deviation may be abbreviated SD, and is most commonly represented in mathematical texts and equations by the lower case Greek letter σ (sigma), for the population standard deviation, or the Latin letter s, for the sample standard deviation. The standard deviation of a random variable, sample, statistical population, data set, or probability distribution is the square root of its variance. It is algebraically simpler, though in practice less robust, than the average absolute deviation. A useful property of the standard deviation is that, unlike the variance, it is expressed in the same unit as the data. The standard deviation of a population or sample and the standard error of a statistic (e.g., of the sample mean) are quite different, but related. The sample mean's standard error is the standard deviation of the set of means that would be found by drawing an infinite number of repeated samples from the population and computing a mean for each sample. The mean's standard error turns out to equal the population standard deviation divided by the square root of the sample size, and is estimated by using the sample standard deviation divided by the square root of the sample size. For example, a poll's standard error (what is reported as the margin of error of the poll), is the expected standard deviation of the estimated mean if the same poll were to be conducted multiple times. Thus, the standard error estimates the standard deviation of an estimate, which itself measures how much the estimate depends on the particular sample that was taken from the population. In science, it is common to report both the standard deviation of the data (as a summary statistic) and the standard error of the estimate (as a measure of potential error in the findings). By convention, only effects more than two standard errors away from a null expectation are considered "statistically significant", a safeguard against spurious conclusion that is really due to random sampling error. When only a sample of data from a population is available, the term standard deviation of the sample or sample standard deviation can refer to either the above-mentioned quantity as applied to those data, or to a modified quantity that is an unbiased estimate of the population standard deviation (the standard deviation of the entire population). (en) Dalam statistika dan probabilitas, simpangan baku atau deviasi standar adalah ukuran sebaran statistik yang paling lazim. Singkatnya, ia mengukur bagaimana nilai-nilai data tersebar.Bisa juga didefinisikan sebagai, rata-rata jarak penyimpangan titik-titik data diukur dari nilai rata-rata data tersebut. Simpangan baku didefinisikan sebagai akar kuadrat varians. Simpangan baku merupakan bilangan tak-negatif, dan memiliki satuan yang sama dengan data. Misalnya jika suatu data diukur dalam satuan meter, maka simpangan baku juga diukur dalam meter pula. Istilah simpangan baku pertama kali diperkenakan oleh Karl Pearson pada tahun 1894, dalam bukunya On the dissection of asymmetrical frequency curves. Dalam Statistik, wilayah data yang berada di antara +/- 1 simpangan baku akan berkisar 68.2%, wilayah data yang berada di antara +/- 2 simpangan baku akan berkisar 95.4%, dan wilayah data yang berada di antara +/- 3 simpangan baku akan berkisar 99.7%, (in) En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité. Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne. Il se note en général avec la lettre grecque σ (« sigma »), d’après l’appellation standard deviation en anglais. Il est homogène à la variable mesurée. Les écarts types sont rencontrés dans tous les domaines où sont appliquées les probabilités et la statistique, en particulier dans le domaine des sondages, en physique, en biologie ou dans la finance. Ils permettent en général de synthétiser les résultats numériques d'une expérience répétée. Tant en probabilités qu'en statistique, il sert à l'expression d'autres notions importantes comme le coefficient de corrélation, le coefficient de variation ou la répartition optimale de Neyman. Quand l'écart type d'une population est inconnu, sa valeur est approchée à l'aide d'estimateurs. (fr) 표준 편차(標準 偏差, 영어: standard deviation, SD)는 통계집단의 분산의 정도 또는 자료의 산포도를 나타내는 수치로, 분산의 음이 아닌 제곱근 즉, 분산을 제곱근한 것으로 정의된다. 표준편차가 작을수록 평균값에서 변량들의 거리가 가깝다. 통계학과 확률에서 주로 확률의 분포, 확률변수 혹은 측정된 인구나 중복집합에 적용된다. 관례에 따라 모집단은 그리스문자로 표본은 영어 알파벳으로 표기하는데, 모집단의 표준편차는 (시그마)로, 표본의 표준편차는 (에스)로 나타낸다. 편차(deviation)는 관측값에서 평균 또는 중앙값을 뺀 것이다. 분산(variance)은 관측값에서 평균을 뺀 값을 제곱하고, 그것을 모두 더한 후 전체 개수로 나눠서 구한다. 즉, 차이값의 제곱의 평균이다. 관측값에서 평균을 뺀 값인 편차를 모두 더하면 0이 나오므로 제곱해서 더한다. 표준 편차(standard deviation)는 분산을 제곱근한 것이다. 편차들(deviations)의 제곱합(SS, sum of square)에서 얻어진 값의 평균치인 분산의 성질로부터 다시 제곱근해서 원래 단위로 만들어줌으로써 얻게된다. 모 표준 편차(population standard deviation) σ는 모집단의 표준 편차이다. 모 분산 σ2에 제곱근을 씌워서 구한다. 표본 표준 편차(sample standard deviation) s는 표본의 표준 편차이다. 표본 분산 s2에 제곱근을 씌워서 구한다. (ko) Lo scarto quadratico medio (o deviazione standard, o scarto tipo, o scostamento quadratico medio) è un indice di dispersione statistico, vale a dire una stima della variabilità di una popolazione di dati o di una variabile casuale. È uno dei modi per esprimere la dispersione dei dati intorno ad un indice di posizione, quale può essere, ad esempio, la media aritmetica o una sua stima. Ha pertanto la stessa unità di misura dei valori osservati (al contrario della varianza che ha come unità di misura il quadrato dell'unità di misura dei valori di riferimento). In statistica la precisione si può esprimere come lo scarto quadratico medio. Il termine "standard deviation" è stato introdotto in statistica da Pearson nel 1894 assieme alla lettera greca (sigma) che lo rappresenta. Il termine italiano "deviazione standard" ne è la traduzione più utilizzata nel linguaggio comune; il termine dell'Ente Nazionale Italiano di Unificazione è tuttavia "scarto tipo". Lo scarto quadratico medio è la radice quadrata della varianza, la quale viene coerentemente rappresentata con il quadrato di sigma, . (it) 標準偏差(ひょうじゅんへんさ、(英: standard deviation, SD)とは、データや確率変数の、平均値からの散らばり具合(ばらつき)を表す指標の一つである。偏差ベクトルと、値が標準偏差のみであるベクトルは、ユークリッドノルムが等しくなる。 標準偏差を2乗したのが分散であり、従って、標準偏差は分散の非負の平方根である。標準偏差が 0 であることは、データの値が全て等しいことと同値である。 母集団や確率変数の標準偏差を σ で、標本の標準偏差を s で表すことがある。 二乗平均平方根 (RMS) を用いると、標準偏差は偏差の二乗平均平方根に等しくなる。 (ja) De standaardafwijking of standaarddeviatie (vaak aangeduid met de Griekse letter σ voor de populatie en s voor de steekproef), een begrip in de statistiek, is een maat voor de spreiding van een variabele of van een verdeling of populatie. De standaardafwijking is gedefinieerd als de wortel uit de variantie, en daardoor vergelijkbaar met de waarden van de variabele zelf. De standaardafwijking wordt gebruikt om de spreiding – de mate waarin de waarden onderling verschillen – van een verdeling aan te geven. De standaardafwijking wordt, anders dan de variantie, in dezelfde eenheid uitgedrukt als de verwachtingswaarde of het gemiddelde. Ook voor een steekproef uit een populatie of verdeling spreekt men van standaardafwijking, of beter van steekproefstandaardafwijking, meestal aangeduid met de letter s. Deze grootheid is een schatting van de standaardafwijking in de bijbehorende populatie of verdeling. Voor een steekproef is de variantie (ongeveer) het gemiddelde van de kwadraten van de afwijking van de metingen ten opzichte van het gemiddelde van de gegevens. (nl) Em probabilidade, o desvio padrão ou desvio padrão populacional (comumente representado pela letra grega ) é uma medida de dispersão em torno da média populacional de uma variável aleatória. O termo possui também uma acepção específica no campo da estatística, na qual também é chamado de desvio padrão amostral (comumente representado pela letra latina ) e indica uma medida de dispersão dos dados em torno de média amostral. Um baixo desvio padrão indica que os pontos dos dados tendem a estar próximos da média ou do valor esperado. Um alto desvio padrão indica que os pontos dos dados estão espalhados por uma ampla gama de valores. O desvio padrão populacional ou amostral é a raiz quadrada da variância populacional ou amostral correspondente, de modo a ser uma medida de dispersão que seja um número não negativo e que use a mesma unidade de medida dos dados fornecidos. Tanto em probabilidade quanto em estatística, o desvio padrão é usado para expressar outros conceitos matemáticos importantes como o coeficiente de correlação, o coeficiente de variação ou a alocação ótima de Neyman, dentre outros. Há também outras medidas de desvio como o desvio médio absoluto, que fornecem propriedades matemáticas diferentes a partir do desvio padrão. O desvio padrão é mais simples, porém mais robusto que o desvio médio absoluto na prática. Além de expressar a variabilidade da população, o desvio padrão comumente é usado para medir a confiança em cálculos estatísticos e geralmente permite sintetizar os resultados de uma experiência repetida várias vezes. Por exemplo, a margem de erro de um conjunto de dados é determinada pelo cálculo do desvio padrão da média ou do desvio padrão populacional inverso da raiz quadrada do tamanho da amostra, se a mesma pesquisa for repetida várias vezes. Esta derivação do desvio padrão geralmente é chamada de erro padrão da estimativa ou erro padrão da média (em referência à média). O erro padrão da média é calculado a partir do desvio padrão das médias, as quais poderiam ser computadas a partir de uma população se um número infinito de amostras e uma média para cada amostra fossem considerados. A margem de erro de uma pesquisa é calculada a partir do erro padrão da média (produto do desvio padrão populacional e do inverso da raiz quadrada do tamanho da amostra), e cerca do dobro do erro padrão da média é a metade da largura de 95% do intervalo de confiança para a média (populacional). O desvio padrão é calculado em todas as áreas que usam probabilidade e estatística, em particular biologia, finanças, física e pesquisas em geral. Em ciência, os pesquisadores comumente reportam o desvio padrão dos dados experimentais. Em geral, apenas os efeitos mais de dois desvios padrões distantes do esperado são considerados estatisticamente significativos – por meio de erro aleatório normal ou variação nas medições podem-se distinguir os efeitos prováveis dos efeitos genuínos. Quando apenas uma amostra dos dados da população está disponível, o termo desvio padrão amostral pode referir-se tanto à quantidade mencionada acima quanto a uma quantidade modificada que seja uma estimativa não enviesada do desvio padrão populacional. Quando o desvio padrão populacional não é conhecido, o seu valor é aproximado por meio do desvio padrão amostral. (pt) Odchylenie standardowe – klasyczna miara zmienności, obok średniej arytmetycznej najczęściej stosowane pojęcie statystyczne. Intuicyjnie rzecz ujmując, odchylenie standardowe mówi, jak szeroko wartości jakiejś wielkości (na przykład wieku, inflacji, kursu walutowego) są rozrzucone wokół jej średniej. Im mniejsza wartość odchylenia tym obserwacje są bardziej skupione wokół średniej. Odchylenie standardowe jest pierwiastkiem kwadratowym z wariancji. Pojęcie odchylenia zostało wprowadzone przez pioniera statystyki, Karla Pearsona, w 1894 roku.Wyróżnia się: * odchylenie standardowe zmiennej losowej, będące właściwością badanego zjawiska. Daje się ono obliczyć na podstawie ścisłych informacji o rozkładzie zmiennej losowej. Rozkład ten w praktycznych badaniach nie jest zwykle znany. * odchylenie standardowe w populacji, które jest liczbą dającą się obliczyć dokładnie, jeśli znane byłyby wartości zmiennej dla wszystkich obiektów populacji; odpowiada odchyleniu zmiennej losowej, której rozkład jest identyczny z rozkładem w populacji. * odchylenie standardowe z próby, które jest oszacowaniem odchylenia standardowego w populacji na podstawie znajomości wyłącznie części jej obiektów, czyli właśnie próby losowej. Stosowane do tego celu wzory nazywane są estymatorami odchylenia standardowego. (pl) Standardavvikelse eller standarddeviation är ett statistiskt mått på hur mycket de olika värdena för en population avviker från medelvärdet. Om de olika värdena ligger samlade nära medelvärdet blir standardavvikelsen låg, medan värden som är spridda långt över och under medelvärdet bidrar till en hög standardavvikelse. Standardavvikelser används inom statistik, forskning och matematisk statistik. (sv) В теории вероятностей и статистике среднеквадрати́ческое (среднеквадрати́чное) отклоне́ние — наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания (аналога среднего арифметического с бесконечным числом исходов). Обычно он означает квадратный корень из дисперсии случайной величины, но иногда может означать тот или иной вариант оценки этого значения. В литературе обычно обозначают греческой буквой (сигма). В статистике принято два обозначения: — для генеральной совокупности и sd (с англ. standard deviation — стандартное отклонение) — для выборки. (ru) 標準差,又稱標準偏差、均方差 (英語:Standard Deviation,縮寫SD,符號σ),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開算术平方根,反映组内個體間的離散程度;標準差與期望值之比為標準離差率。測量到分佈程度的結果,原則上具有兩種性質: 1. * 為非負數值(因為平方後再做平方根); 2. * 與測量資料具有相同單位(這樣才能比對)。 一個總量的標準差或一個隨機變量的標準差,及一個子集合樣品數的標準差之間,有所差別。其公式如下所列。 標準差的概念由卡爾·皮爾森引入到統計中。 (zh) Станда́ртне відхи́лення (англ. standard deviation) або середнє квадратичне відхилення — у теорії ймовірностей і статистиці один із найпоширеніших показників розсіювання (розкиду) значень випадкової величини відносно її математичного сподівання, тобто центру розподілу. Має ту ж розмірність, що і випадкова величина. В літературі для позначення стандартного відхилення використовується літера грецької абетки сигма σ. За визначенням середнє квадратичне відхилення є додатнім квадратним коренем із дисперсії. Як і дисперсія характеризує розсіяння значень навколо центру розподілу: більшому значенню стандартного відхилення відповідає більший їх розкид. Практична перевага стандартного відхилення як міри розсіяння в порівнянні з дисперсією полягає в тому, що його розмірність збігається з розмірністю випадкової величини, в той час як розмірність дисперсії — квадрат розмірності випадкової величини. Іноді середнє квадратичне відхилення називають «стандартною похибкою» або «стандартною помилкою». Ці назви вживати не рекомендується, оскільки це може призвести до плутанини і неправильного тлумачення результатів того чи іншого дослідження. Слід зауважити, що стандартне відхилення випадкової величини не є випадковою величиною. (uk)
dbo:thumbnail wiki-commons:Special:FilePath/Standard_deviation_diagram.svg?width=300
dbo:wikiPageExternalLink https://standard-deviation-calculator.net/
dbo:wikiPageID 27590 (xsd:integer)
dbo:wikiPageLength 52876 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1120954441 (xsd:integer)
dbo:wikiPageWikiLink dbr:Calculus dbr:Carl_Friedrich_Gauss dbr:Prediction_interval dbr:Probability_distribution dbr:Sample_variance dbr:Margin_of_error dbc:Statistical_deviation_and_dispersion dbr:Bessel's_correction dbr:United_States dbr:Variance dbr:Degrees_of_freedom_(statistics) dbr:Descriptive_statistics dbr:Deviation_(statistics) dbr:Sigma dbr:Commutative_property dbr:Confidence_interval dbr:Covariance dbr:Mean dbr:Measurement dbr:S dbr:Chi_distribution dbr:Error_bar dbr:Estimator dbr:Geometric_standard_deviation dbr:Samuelson's_inequality dbr:Gamma_function dbr:Greek_alphabet dbr:Modern_portfolio_theory dbr:Moment_(mathematics) dbr:Multivariate_normal_distribution dbr:Concave_function dbr:Consistent_estimator dbr:Arithmetic_overflow dbr:Arithmetic_underflow dbr:Location_parameter dbr:Log-normal_distribution dbr:Standard_score dbr:Statistical_significance dbr:Statistics dbr:Completing_the_square dbr:Pareto_distribution dbr:Particle_physics dbr:Percentage_point dbr:Statistical_population dbr:Mahalanobis_distance dbr:68–95–99.7_rule dbr:CERN dbr:Cauchy_distribution dbr:Central_limit_theorem dbc:Summary_statistics dbr:Data_set dbr:Fat_tails dbr:Least_squares dbr:Percentile dbr:Algebra dbr:Cumulant dbr:Cumulative_distribution_function dbr:Error_function dbr:Excess_kurtosis dbr:Expected_value dbr:First_observation_of_gravitational_waves dbr:Normal_distribution dbr:Normalizing_constant dbr:Parametric_model dbr:Central_moment dbr:Definite_integral dbr:Probability_density_function dbr:Statistical_dispersion dbr:Random_variable dbr:Robust_standard_deviation dbr:Root_mean_square dbr:Higgs_boson dbr:Technical_analysis dbr:Sample_mean dbr:Accuracy_and_precision dbr:Chebyshev's_inequality dbr:Jensen's_inequality dbr:Karl_Pearson dbr:Latin_alphabet dbr:Summation dbr:Coefficient_of_variation dbr:Efficient_estimator dbr:Distance_correlation dbr:Average dbr:Average_absolute_deviation dbr:Bollinger_Bands dbr:Square_(algebra) dbr:Square_root dbr:Maximum_likelihood dbr:Mean_absolute_deviation dbr:Mean_absolute_error dbr:Mean_squared_error dbr:Risk dbr:Sample_(statistics) dbr:Scale_parameter dbr:Six_Sigma dbr:Standard_error dbr:Robust_statistics dbr:Statistic dbr:Propagation_of_uncertainty dbr:Root-mean-square_deviation dbr:Round-off_error dbr:Pooled_variance dbr:Raw_data dbr:Unbiased_estimation_of_standard_deviation dbr:Yamartino_method dbr:Average_human_height dbr:Sample_size dbr:Squared_deviations dbr:Statistical_sample dbr:Biased_estimator dbr:Orthogonal_distance dbr:Continuous_distribution dbr:Dimensionless_number dbr:Standardized_testing_(statistics) dbr:Unbiased_estimator dbr:File:Comparison_standard_deviations.svg dbr:File:Confidence_interval_by_Standard_deviation.svg dbr:File:Normal-distribution-cumulative-density-function.svg dbr:File:Standard_deviation_by_Confidence_interval.svg dbr:File:MultivariateNormal.png dbr:File:Standard_deviation_diagram.svg
dbp:id p/q076030 (en)
dbp:title Quadratic deviation (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:Anchor dbt:Authority_control dbt:Commons dbt:Div_col dbt:Div_col_end dbt:Further dbt:Gaps dbt:Main dbt:Other_uses dbt:Portal dbt:Reflist dbt:See_also dbt:Short_description dbt:Snd dbt:Use_dmy_dates dbt:Val dbt:Collapse_bottom dbt:Collapse_top dbt:Statistics dbt:Technical_analysis
dct:subject dbc:Statistical_deviation_and_dispersion dbc:Summary_statistics
gold:hypernym dbr:Measure
rdf:type owl:Thing dbo:Software
rdfs:comment 標準偏差(ひょうじゅんへんさ、(英: standard deviation, SD)とは、データや確率変数の、平均値からの散らばり具合(ばらつき)を表す指標の一つである。偏差ベクトルと、値が標準偏差のみであるベクトルは、ユークリッドノルムが等しくなる。 標準偏差を2乗したのが分散であり、従って、標準偏差は分散の非負の平方根である。標準偏差が 0 であることは、データの値が全て等しいことと同値である。 母集団や確率変数の標準偏差を σ で、標本の標準偏差を s で表すことがある。 二乗平均平方根 (RMS) を用いると、標準偏差は偏差の二乗平均平方根に等しくなる。 (ja) Standardavvikelse eller standarddeviation är ett statistiskt mått på hur mycket de olika värdena för en population avviker från medelvärdet. Om de olika värdena ligger samlade nära medelvärdet blir standardavvikelsen låg, medan värden som är spridda långt över och under medelvärdet bidrar till en hög standardavvikelse. Standardavvikelser används inom statistik, forskning och matematisk statistik. (sv) 標準差,又稱標準偏差、均方差 (英語:Standard Deviation,縮寫SD,符號σ),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開算术平方根,反映组内個體間的離散程度;標準差與期望值之比為標準離差率。測量到分佈程度的結果,原則上具有兩種性質: 1. * 為非負數值(因為平方後再做平方根); 2. * 與測量資料具有相同單位(這樣才能比對)。 一個總量的標準差或一個隨機變量的標準差,及一個子集合樣品數的標準差之間,有所差別。其公式如下所列。 標準差的概念由卡爾·皮爾森引入到統計中。 (zh) في الإحصاء ونظرية الاحتمالات، يعتبر الانحراف المعياري (بالإنجليزية: Standard deviation)‏ القيمة الأكثر استخداما من بين مقاييس التشتت الإحصائي لقياس مدى التبعثر الإحصائي، أي أنه يدل على مدى امتداد مجالات القيم ضمن مجموعة البيانات الإحصائية. عادة ما يرمز إلى الانحراف المعياري بالحرف الإغريقي الصغير σ. والتباين وهو معدل مربعات انحرافات العلامات في التوزيع عن الوسط الحسابي. ويكون الانحراف المعياري عندها الجذر التربيعي للتباين بالنسبة لمجموعة البيانات الإحصائية. (ar) La desviació tipus (σ o S), també coneguda com a desviació estàndard o desviació típica i abreviada Desv, SD o StDev (de l'anglès Standard Deviation) és una mesura de variabilitat o diversitat que s'usa en estadística i teoria de la probabilitat. Mostra quanta variació o "dispersió" hi ha respecte a la mitjana. Una desviació tipus baixa indica que els punts de dades tendeixen a ser propers a la mitjana, mentre que una desviació tipus alta indica que les dades s'estenen al llarg d'un gran rang de valors. (ca) Směrodatná odchylka, značená řeckým písmenem σ, je v teorii pravděpodobnosti a statistice často používanou mírou statistické variability. Jedná se o odmocninu z rozptylu náhodné veličiny: kde je náhodná veličina, její rozptyl a její střední hodnota. Směrodatná odchylka vypovídá o tom, nakolik se od sebe navzájem typicky liší jednotlivé případy v souboru zkoumaných hodnot. Je-li malá, jsou si prvky souboru většinou navzájem podobné, a naopak velká směrodatná odchylka signalizuje velké vzájemné odlišnosti. Na základě znalosti distribuční funkce rozdělení nebo pomocí Čebyševovy nerovnosti lze odhadovat, jak daleko jsou hodnoty náhodné veličiny typicky vzdálené od sebe navzájem nebo od střední hodnoty. (cs) Στη στατιστική, η τυπική απόκλιση (SD, εκπροσωπούμενη επίσης από το ελληνικό γράμμα σίγμα σ ή s) είναι ένα μέτρο που χρησιμοποιείται για να υπολογιστεί το ποσό της μεταβολής ή της διασποράς ενός συνόλου τιμών δεδομένων. Μια χαμηλή τυπική απόκλιση υποδηλώνει ότι τα σημεία των δεδομένων τείνουν να είναι κοντά στο μέσο όρο (που ονομάζεται επίσης η αναμενόμενη τιμή) του συνόλου, ενώ μία υψηλή τυπική απόκλιση υποδεικνύει ότι τα στοιχεία απλώνονται πάνω από ένα ευρύτερο φάσμα των τιμών. (el) En la statistiko, la norma diferenco aŭ norma devio estas mezuro por la aranĝo de hazardaj variabloj ĉirkaŭ averaĝo. Por hazarda variablo ĝi definiĝas kiel la pozitiva kvadrata radiko el ties varianco kaj skribiĝas .La varianco de hazarda variablo estas la centrigita momanto de dua ordo el la respektiva probabla distribuo, la atendata valoro la unua momanto. Se ekzistas eksperimenta serio de la longeco , la empiria averaĝo kaj la empiria norma diferenco estas la plej gravaj mezuroj por priskribo de la ecoj de la eksperimenta serio. (eo) En estadística, la desviación típica (también conocida como desviación estándar y desvío típico y representada de manera abreviada por la letra griega minúscula sigma σ o la letra latina s, así como por las siglas SD (de standard deviation, en algunos textos traducidos del inglés)) es una medida que se utiliza para cuantificar la variación o la dispersión de un conjunto de datos numéricos.​ (es) Probabilitate teorian eta estatistikan, desbideratze estandarra edo desbideratze tipikoa aldagai kuantitatibo bati buruzko datu-multzoen eta probabilitate-banakuntzen sakabanatze neurri absolutu bat da. Jatorrian eta datu-multzo baterako, datu bakoitza batezbesteko aritmetiko sinpletik batez beste zenbat desbideratzen den adierazten du. Horrela, desbideratze estandarra batezbesteko aritmetiko sinplearen adierazgarritasun-neurria da: zenbat eta handiagoa izan, datuak orokorrean batezbestekotik orduan eta gehiago desbideratzen dira, eta beraz, batezbestekoak adierazgarritasuna galtzen du. Beste alde batetik, bariantza desbideratze estandarraren karratua da. Biak ala biak dira estatistikan gehien erabiltzen diren sakabanatze neurriak, bereziki euren propietate matematikoengatik. Hala ere, dat (eu) Dalam statistika dan probabilitas, simpangan baku atau deviasi standar adalah ukuran sebaran statistik yang paling lazim. Singkatnya, ia mengukur bagaimana nilai-nilai data tersebar.Bisa juga didefinisikan sebagai, rata-rata jarak penyimpangan titik-titik data diukur dari nilai rata-rata data tersebut. Simpangan baku didefinisikan sebagai akar kuadrat varians. Simpangan baku merupakan bilangan tak-negatif, dan memiliki satuan yang sama dengan data. Misalnya jika suatu data diukur dalam satuan meter, maka simpangan baku juga diukur dalam meter pula. (in) In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range. Standard deviation may be abbreviated SD, and is most commonly represented in mathematical texts and equations by the lower case Greek letter σ (sigma), for the population standard deviation, or the Latin letter s, for the sample standard deviation. (en) En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité. Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne. Il se note en général avec la lettre grecque σ (« sigma »), d’après l’appellation standard deviation en anglais. Il est homogène à la variable mesurée. Quand l'écart type d'une population est inconnu, sa valeur est approchée à l'aide d'estimateurs. (fr) Lo scarto quadratico medio (o deviazione standard, o scarto tipo, o scostamento quadratico medio) è un indice di dispersione statistico, vale a dire una stima della variabilità di una popolazione di dati o di una variabile casuale. Il termine "standard deviation" è stato introdotto in statistica da Pearson nel 1894 assieme alla lettera greca (sigma) che lo rappresenta. Il termine italiano "deviazione standard" ne è la traduzione più utilizzata nel linguaggio comune; il termine dell'Ente Nazionale Italiano di Unificazione è tuttavia "scarto tipo". (it) 표준 편차(標準 偏差, 영어: standard deviation, SD)는 통계집단의 분산의 정도 또는 자료의 산포도를 나타내는 수치로, 분산의 음이 아닌 제곱근 즉, 분산을 제곱근한 것으로 정의된다. 표준편차가 작을수록 평균값에서 변량들의 거리가 가깝다. 통계학과 확률에서 주로 확률의 분포, 확률변수 혹은 측정된 인구나 중복집합에 적용된다. 관례에 따라 모집단은 그리스문자로 표본은 영어 알파벳으로 표기하는데, 모집단의 표준편차는 (시그마)로, 표본의 표준편차는 (에스)로 나타낸다. 편차(deviation)는 관측값에서 평균 또는 중앙값을 뺀 것이다. 분산(variance)은 관측값에서 평균을 뺀 값을 제곱하고, 그것을 모두 더한 후 전체 개수로 나눠서 구한다. 즉, 차이값의 제곱의 평균이다. 관측값에서 평균을 뺀 값인 편차를 모두 더하면 0이 나오므로 제곱해서 더한다. 표준 편차(standard deviation)는 분산을 제곱근한 것이다. 편차들(deviations)의 제곱합(SS, sum of square)에서 얻어진 값의 평균치인 분산의 성질로부터 다시 제곱근해서 원래 단위로 만들어줌으로써 얻게된다. (ko) Odchylenie standardowe – klasyczna miara zmienności, obok średniej arytmetycznej najczęściej stosowane pojęcie statystyczne. Intuicyjnie rzecz ujmując, odchylenie standardowe mówi, jak szeroko wartości jakiejś wielkości (na przykład wieku, inflacji, kursu walutowego) są rozrzucone wokół jej średniej. Im mniejsza wartość odchylenia tym obserwacje są bardziej skupione wokół średniej. Odchylenie standardowe jest pierwiastkiem kwadratowym z wariancji. Pojęcie odchylenia zostało wprowadzone przez pioniera statystyki, Karla Pearsona, w 1894 roku.Wyróżnia się: (pl) Em probabilidade, o desvio padrão ou desvio padrão populacional (comumente representado pela letra grega ) é uma medida de dispersão em torno da média populacional de uma variável aleatória. O termo possui também uma acepção específica no campo da estatística, na qual também é chamado de desvio padrão amostral (comumente representado pela letra latina ) e indica uma medida de dispersão dos dados em torno de média amostral. Um baixo desvio padrão indica que os pontos dos dados tendem a estar próximos da média ou do valor esperado. Um alto desvio padrão indica que os pontos dos dados estão espalhados por uma ampla gama de valores. O desvio padrão populacional ou amostral é a raiz quadrada da variância populacional ou amostral correspondente, de modo a ser uma medida de dispersão que seja um (pt) De standaardafwijking of standaarddeviatie (vaak aangeduid met de Griekse letter σ voor de populatie en s voor de steekproef), een begrip in de statistiek, is een maat voor de spreiding van een variabele of van een verdeling of populatie. De standaardafwijking is gedefinieerd als de wortel uit de variantie, en daardoor vergelijkbaar met de waarden van de variabele zelf. (nl) В теории вероятностей и статистике среднеквадрати́ческое (среднеквадрати́чное) отклоне́ние — наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания (аналога среднего арифметического с бесконечным числом исходов). Обычно он означает квадратный корень из дисперсии случайной величины, но иногда может означать тот или иной вариант оценки этого значения. (ru) Станда́ртне відхи́лення (англ. standard deviation) або середнє квадратичне відхилення — у теорії ймовірностей і статистиці один із найпоширеніших показників розсіювання (розкиду) значень випадкової величини відносно її математичного сподівання, тобто центру розподілу. Має ту ж розмірність, що і випадкова величина. В літературі для позначення стандартного відхилення використовується літера грецької абетки сигма σ. Слід зауважити, що стандартне відхилення випадкової величини не є випадковою величиною. (uk)
rdfs:label انحراف معياري (ar) Desviació tipus (ca) Směrodatná odchylka (cs) Standardabweichung (Stochastik) (de) Τυπική απόκλιση (el) Norma devio (eo) Desbideratze estandar (eu) Desviación típica (es) Écart type (fr) Simpangan baku (in) Scarto quadratico medio (it) 표준 편차 (ko) 標準偏差 (ja) Standaardafwijking (nl) Odchylenie standardowe (pl) Standard deviation (en) Desvio padrão (pt) Среднеквадратическое отклонение (ru) Standardavvikelse (sv) 標準差 (zh) Стандартне відхилення (uk)
rdfs:seeAlso dbr:Sample_variance dbr:Margin_of_error dbr:Algorithms_for_calculating_variance
owl:sameAs dbpedia-commons:Standard deviation dbpedia-pl:Standard deviation freebase:Standard deviation http://d-nb.info/gnd/4767332-1 wikidata:Standard deviation dbpedia-af:Standard deviation dbpedia-ar:Standard deviation http://ast.dbpedia.org/resource/Esviación_típica dbpedia-az:Standard deviation dbpedia-be:Standard deviation dbpedia-bg:Standard deviation http://bs.dbpedia.org/resource/Standardna_devijacija dbpedia-ca:Standard deviation http://ckb.dbpedia.org/resource/لادانی_پێوانەیی dbpedia-cs:Standard deviation http://cv.dbpedia.org/resource/Тăваткалла_вăтам_пăрăнав dbpedia-cy:Standard deviation dbpedia-da:Standard deviation dbpedia-de:Standard deviation dbpedia-el:Standard deviation dbpedia-eo:Standard deviation dbpedia-es:Standard deviation dbpedia-et:Standard deviation dbpedia-eu:Standard deviation dbpedia-fa:Standard deviation dbpedia-fi:Standard deviation dbpedia-fr:Standard deviation dbpedia-gl:Standard deviation dbpedia-he:Standard deviation http://hi.dbpedia.org/resource/मानक_विचलन dbpedia-hr:Standard deviation dbpedia-hu:Standard deviation dbpedia-id:Standard deviation dbpedia-is:Standard deviation dbpedia-it:Standard deviation dbpedia-ja:Standard deviation dbpedia-kk:Standard deviation dbpedia-ko:Standard deviation dbpedia-la:Standard deviation http://lt.dbpedia.org/resource/Standartinis_nuokrypis http://lv.dbpedia.org/resource/Standartnovirze dbpedia-mk:Standard deviation dbpedia-ms:Standard deviation http://ne.dbpedia.org/resource/स्तरीय_भिन्नता dbpedia-nl:Standard deviation dbpedia-nn:Standard deviation dbpedia-no:Standard deviation dbpedia-oc:Standard deviation dbpedia-pt:Standard deviation dbpedia-ro:Standard deviation dbpedia-ru:Standard deviation http://scn.dbpedia.org/resource/Diviazzioni_standard dbpedia-sh:Standard deviation http://si.dbpedia.org/resource/සම්මත_අපගමනය dbpedia-simple:Standard deviation dbpedia-sk:Standard deviation dbpedia-sl:Standard deviation dbpedia-sq:Standard deviation dbpedia-sr:Standard deviation http://su.dbpedia.org/resource/Simpangan_baku dbpedia-sv:Standard deviation dbpedia-sw:Standard deviation http://ta.dbpedia.org/resource/நியமவிலகல் dbpedia-th:Standard deviation http://tl.dbpedia.org/resource/Standard_deviation dbpedia-tr:Standard deviation dbpedia-uk:Standard deviation http://ur.dbpedia.org/resource/معیاری_انحراف dbpedia-vi:Standard deviation dbpedia-war:Standard deviation dbpedia-zh:Standard deviation https://global.dbpedia.org/id/aTCj
prov:wasDerivedFrom wikipedia-en:Standard_deviation?oldid=1120954441&ns=0
foaf:depiction wiki-commons:Special:FilePath/Comparison_standard_deviations.svg wiki-commons:Special:FilePath/Confidence_interval_by_Standard_deviation.svg wiki-commons:Special:FilePath/MultivariateNormal.png wiki-commons:Special:FilePath/Normal-distribution-cumulative-density-function.svg wiki-commons:Special:FilePath/Standard_deviation_by_Confidence_interval.svg wiki-commons:Special:FilePath/Standard_deviation_diagram.svg
foaf:isPrimaryTopicOf wikipedia-en:Standard_deviation
is dbo:knownFor of dbr:Francis_Galton
is dbo:wikiPageDisambiguates of dbr:Deviation dbr:Standard dbr:Standard_deviation_(disambiguation) dbr:SD
is dbo:wikiPageRedirects of dbr:5_sigma dbr:Five_sigma dbr:Sample_standard_deviation dbr:Standard_Deviation dbr:Standard_deviations dbr:Standart_Deviation dbr:Std._dev. dbr:Std_dev dbr:Stddev dbr:Stdev dbr:Four_sigma dbr:One_sigma dbr:Quadratic_deviation dbr:Sigma_interval dbr:Population_standard_deviation dbr:Standard_variance
is dbo:wikiPageWikiLink of dbr:Cabibbo–Kobayashi–Maskawa_matrix dbr:American_Journal_of_Biological_Anthropology dbr:5_sigma dbr:Beam_diameter dbr:Behaviorally_anchored_rating_scales dbr:Behrens–Fisher_problem dbr:Power_law dbr:Pregnancy dbr:Price_dispersion dbr:Probabilistic_metric_space dbr:Probability_distribution dbr:Process_capability_index dbr:Programme_for_International_Student_Assessment dbr:Proton dbr:Qualitative_variation dbr:Quality_(business) dbr:Quantile dbr:Quantum_mechanics dbr:Ronald_K._Hoeflin dbr:Rounding dbr:Roy's_safety-first_criterion dbr:Scale_(social_sciences) dbr:Elastic_map dbr:Elementary_effects_method dbr:Engineering_statistics dbr:Ensemble_Kalman_filter dbr:Ensemble_forecasting dbr:Enthalpy_of_vaporization dbr:List_of_dimensionless_quantities dbr:List_of_financial_performance_measures dbr:MINOS dbr:Margin_of_error dbr:Microscale_and_macroscale_models dbr:Multimodal_distribution dbr:Normal_curve_equivalent dbr:MIDAS_technical_analysis dbr:MIQE dbr:Menstrual_synchrony dbr:Mercury_in_fish dbr:Metal_ions_in_aqueous_solution dbr:Vysochanskij–Petunin_inequality dbr:One-pass_algorithm dbr:Oops-Leon dbr:Parking_Generation dbr:Partial_correlation dbr:Parts-per_notation dbr:Time_series dbr:ProbOnto dbr:Probability_distribution_fitting dbr:Process_capability dbr:Resonant_trans-Neptunian_object dbr:Vasicek_model dbr:Bayesian_network dbr:Beryllium-8 dbr:Blizzard_of_1977 dbr:Blood_pressure dbr:Bloom's_2_sigma_problem dbr:Bond_option dbr:Bone dbr:Bose–Einstein_statistics dbr:David_Deming_(economist) dbr:David_Dodd dbr:Detection_limit dbr:Determination_of_equilibrium_constants dbr:Algorithmic_trading dbr:Alignment-free_sequence_analysis dbr:Allan_variance dbr:Anomalous_magnetic_dipole_moment dbr:Anomaly_(natural_sciences) dbr:Anscombe_transform dbr:Apportionment_(politics) dbr:Arctic_oscillation dbr:Area_navigation dbr:Argument_map dbr:Homo_antecessor dbr:Bessel's_correction dbr:Beta_(finance) dbr:Beta_distribution dbr:Bias_of_an_estimator dbr:List_of_mathematical_symbols_by_subject dbr:Pearson_correlation_coefficient dbr:Peking_Man dbr:Pentaquark dbr:Ridge_regression dbr:RiskMetrics dbr:Cycle_of_quantification/qualification dbr:DASS_(psychology) dbr:DNA_microarray dbr:Unbiased_rendering dbr:Uncertainty_principle dbr:Uruguay dbr:VIX dbr:Variance dbr:Victor_Niederhoffer dbr:Volcanic_winter_of_536 dbr:David_Wechsler dbr:Dean_Radin dbr:Delayed_puberty dbr:Descriptive_statistics dbr:Design_effect dbr:Design_of_experiments dbr:Deviation_(statistics) dbr:Deviation_risk_measure dbr:Doppler_broadening dbr:Doppler_optical_coherence_tomography dbr:Downside_beta dbr:Downside_risk dbr:Dynamic_financial_analysis dbr:Index_of_genetics_articles dbr:Indian_giant_squirrel dbr:Indian_spotted_creeper dbr:Industrial_robot dbr:Information_fluctuation_complexity dbr:Information_ratio dbr:Inter-rater_reliability dbr:Interdecile_range dbr:Interquartile_range dbr:Investment_fund dbr:Iodine_deficiency dbr:Kurtosis dbr:Kuwahara_filter dbr:L-estimator dbr:Sigma dbr:Level_of_measurement dbr:Limiting_magnitude dbr:List_of_letters_used_in_mathematics_and_science dbr:List_of_mathematical_abbreviations dbr:List_of_medical_abbreviations:_S dbr:List_of_methylphenidate_analogues dbr:List_of_probability_topics dbr:Statistical_interference dbr:Rectal_foreign_body dbr:Repeatability dbr:W′_and_Z′_bosons dbr:Portfolio_optimization dbr:Standardized_mean_of_a_contrast_variable dbr:Penalized_present_value dbr:Pentasomy_X dbr:Post-modern_portfolio_theory dbr:Potential_predictability dbr:Predictive_methods_for_surgery_duration dbr:Quantum_clock dbr:Sample_size_determination dbr:Sparse_distributed_memory dbr:Proton-to-electron_mass_ratio dbr:Variation_ratio dbr:Robust_measures_of_scale dbr:Westgard_rules dbr:Welch's_t-test dbr:(410777)_2009_FD dbr:(612243)_2001_QR322 dbr:(Q,r)_model dbr:.500_Whisper dbr:.510_Whisper dbr:100-year_flood dbr:1984_Soviet_Union_tornado_outbreak dbr:College_Scholastic_Ability_Test dbr:Complete_blood_count dbr:Correlation dbr:CrysTBox dbr:Mathematical_finance dbr:Maximum_entropy_probability_distribution dbr:Measurement_in_quantum_mechanics dbr:Median dbr:Medical_thermometer dbr:Mensa_International dbr:S&P/ASX_200_VIX dbr:SOFA_Statistics dbr:Chi-squared_distribution dbr:Chi_distribution dbr:Child_development dbr:Childhood_obesity dbr:Error_bar dbr:Errors_and_residuals dbr:Estimated_date_of_delivery dbr:Estimator dbr:Gauss's_inequality dbr:Gaussian_filter dbr:Gaussian_noise dbr:Genetics_of_obesity dbr:Geo_URI_scheme dbr:Geometric_standard_deviation dbr:Geophone dbr:Low-discrepancy_sequence dbr:Nelson_rules dbr:Neuroticism dbr:Noise_(electronics) dbr:Normality_(behavior) dbr:Operations_management dbr:Orders_of_magnitude_(probability) dbr:Outlier dbr:Natural_process_variation dbr:Strictly_standardized_mean_difference dbr:Samuelson's_inequality dbr:Robinow_syndrome dbr:Shot_noise dbr:Quartile dbr:Quota_sampling dbr:Urology dbr:Search_for_the_Higgs_boson dbr:Clay_mineral_X-ray_diffraction dbr:Coefficient_of_determination dbr:Effect_size dbr:Electroconvulsive_therapy dbr:Electronvolt dbr:Eleven-plus dbr:Elo_rating_system dbr:Freedom_House dbr:Freedom_in_the_World dbr:GOES-16 dbr:Gaussian_blur dbr:Gaussian_function dbr:Gaussian_process dbr:German_tank_problem dbr:Gigantism dbr:Glossary_of_engineering:_A–L dbr:Glossary_of_probability_and_statistics dbr:Graduate_Management_Admission_Test dbr:Gravitational_constant dbr:Greek_alphabet dbr:Box_plot dbr:Mode_(statistics) dbr:Modern_searches_for_Lorentz_violation dbr:Modigliani_risk-adjusted_performance dbr:Moment_(mathematics) dbr:Morquio_syndrome dbr:Mount_Kenya dbr:Concentration_inequality dbr:Condensation_algorithm dbr:Contrast-to-noise_ratio dbr:Control_chart dbr:Control_limits dbr:Corporate_finance dbr:Correlation_ratio dbr:Correlogram dbr:Coskewness dbr:Credit_rating_agencies_and_the_subprime_crisis dbr:Crest_factor dbr:Cribbage_statistics dbr:Cross-correlation dbr:Thermodynamic_temperature dbr:Thermoregulation dbr:Epstein_frame dbr:Equating dbr:LHCb_experiment dbr:Team_Oregon dbr:Order_of_approximation dbr:Otis–Lennon_School_Ability_Test dbr:2019_Arkansas_River_floods dbr:2020_United_States_presidential_election_in_Arizona dbr:2020_VV dbr:Anemia dbr:Angular_momentum_operator dbr:Anne_Anastasi dbr:Arithmetic_mean dbr:Army_Specialized_Training_Program dbr:Liceo_Classico_Paolo_Sarpi dbr:Linderman_effect dbr:Log-normal_distribution dbr:London_cable_car dbr:Louis_Leon_Thurstone dbr:Lp_space dbr:Luzon_montane_forest_mouse dbr:MEROPS dbr:Simple_linear_regression dbr:Slope dbr:Standard_score dbr:Standardized_coefficient dbr:Statistical_significance dbr:Statistics dbr:Student's_t-test dbr:Studentized_residual dbr:Climate_of_Mount_Kenya dbr:Color_Cell_Compression dbr:Color_mapping dbr:Color_moments dbr:Zika_fever dbr:Feature_scaling dbr:Full_width_at_half_maximum dbr:Funginite dbr:Half_flux_diameter dbr:Harmonic_distribution dbr:Deviation dbr:Jostel's_TSH_index dbr:Kernel_density_estimation dbr:Kowarski_syndrome dbr:Kramers–Wannier_duality dbr:Leptoquark dbr:Risk_aversion dbr:Parametric_statistics dbr:Peabody_Picture_Vocabulary_Test dbr:Percentage_point dbr:Pivot_table dbr:Principal_Galaxies_Catalogue dbr:Process_Window_Index dbr:Process_performance_index dbr:Psychometric_Entrance_Test dbr:Pupillary_distance dbr:Statistical_parameter dbr:Macrocephaly
is dbp:knownFor of dbr:Francis_Galton
is rdfs:seeAlso of dbr:Normal_distribution
is foaf:primaryTopic of wikipedia-en:Standard_deviation