Dynamin, a membrane-remodelling GTPase (original) (raw)
McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol.12, 517–533 (2011). ArticleCAS Google Scholar
Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Ann. Rev. Biochem.79, 803–833 (2010). ArticleCASPubMed Google Scholar
Howes, M. T., Mayor, S. & Parton, R. G. Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Curr. Opin. Cell Biol.22, 519–527 (2010). ArticleCASPubMed Google Scholar
Koenig, J. H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci.9, 3844–3860 (1989). Shows the depletion of synaptic vesicles and accumulation of collared pits in the plasma membrane of shibire mutant synapses upon acute stimulation at the non-permissive temperature, and thus nicely demonstrates the critical role played by dynamin in synaptic vesicle recycling. ArticleCASPubMedPubMed Central Google Scholar
Shpetner, H. S. & Vallee, R. B. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell59, 421–432 (1989). ArticleCASPubMed Google Scholar
van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature351, 411–414 (1991). ArticleCASPubMed Google Scholar
Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature351, 583–586 (1991). References 7 and 8 identify dynamin as the product of theshibiregene and set the stage for studies of dynamin as a critical endocytic protein. ArticleCASPubMed Google Scholar
Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature347, 256–261 (1990). ArticleCASPubMed Google Scholar
Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature374, 186–190 (1995). ArticleCASPubMed Google Scholar
Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature374, 190–192 (1995). References 10 and 11 show the ability of dynamin to polymerize into helices around membrane templates and at the base of clathrin-coated pits, leading to a model wherein the assembly of dynamin into helical polymers followed by conformational changes triggered by GTP hydrolysis could lead to membrane fission. ArticleCASPubMed Google Scholar
Damke, H., Baba, T., Warnock, D. E. & Schmid, S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol.127, 915–934 (1994). ArticleCASPubMed Google Scholar
Herskovits, J. S., Burgess, C. C., Obar, R. A. & Vallee, R. B. Effects of mutant rat dynamin on endocytosis. J. Cell Biol.122, 565–578 (1993). ArticleCASPubMed Google Scholar
van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol.122, 553–563 (1993). Demonstrates that dynamin mutants with impaired GTP binding and hydrolysis exert dominant-negative effects on clathrin-mediated endocytosis. ArticleCASPubMed Google Scholar
Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature410, 231–235 (2001). Shows the importance of GTP hydrolysis by dynamin in the endocytic actions of dynamin, arguing against a regulatory GTPase-like function for dynamin. ArticleCASPubMed Google Scholar
Cao, H., Garcia, F. & McNiven, M. A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell9, 2595–2609 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ferguson, S. M. et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science316, 570–574 (2007). Reveals using dynamin 1-knockout mice that, contrary to expectations, dynamin 1 is not required for the making of synaptic vesicles but rather serves to enhance the efficiency of this clathrin-mediated process at synapses. ArticleCASPubMed Google Scholar
Nakata, T. et al. Predominant and developmentally regulated expression of dynamin in neurons. Neuron7, 461–469 (1991). ArticleCASPubMed Google Scholar
Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell17, 811–822 (2009). Analyses the endocytic intermediates that accumulate in cells lacking dynamin and indicates a role for F-actin in the recruitment of BAR domain-containing proteins to the tubular neck of clathrin-coated pits. ArticleCASPubMedPubMed Central Google Scholar
Liu, Y. W., Surka, M. C., Schroeter, T., Lukiyanchuk, V. & Schmid, S. L. Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells. Mol. Biol. Cell19, 5347–5359 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cook, T. A., Urrutia, R. & McNiven, M. A. Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc. Natl Acad. Sci. USA91, 644–648 (1994). ArticleCASPubMedPubMed Central Google Scholar
Raimondi, A. et al. Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron70, 1100–1114 (2011). Reports that, although dynamin 3-knockout mice lack a discernible phenotype, analysis of dynamin 1 and dynamin 3 double-knockout mice reveals a role for both dynamins in the recycling of synaptic vesicles. ArticleCASPubMedPubMed Central Google Scholar
Clark, S. G., Shurland, D. L., Meyerowitz, E. M., Bargmann, C. I. & van der Bliek, A. M. A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc. Natl Acad. Sci. USA94, 10438–10443 (1997). ArticleCASPubMedPubMed Central Google Scholar
Xue, J. et al. Calcineurin selectively docks with the dynamin Ixb splice variant to regulate activity-dependent bulk endocytosis. J. Biol. Chem.286, 30295–30303 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bodmer, D., Ascano, M. & Kuruvilla, R. Isoform-specific dephosphorylation of dynamin1 by calcineurin couples neurotrophin receptor endocytosis to axonal growth. Neuron70, 1085–1099 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pizzato, M. et al. Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef. Proc. Natl Acad. Sci. USA104, 6812–6817 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gray, N. W. et al. Dynamin 3 is a component of the postsynapse, where it interacts with mGluR5 and Homer. Curr. Biol.13, 510–515 (2003). ArticleCASPubMed Google Scholar
Liu, Y. W. et al. Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation. Proc. Natl Acad. Sci. USA108, E234–E242 (2011). CASPubMedPubMed Central Google Scholar
Gasper, R., Meyer, S., Gotthardt, K., Sirajuddin, M. & Wittinghofer, A. It takes two to tango: regulation of G proteins by dimerization. Nature Rev. Mol. Cell Biol.10, 423–429 (2009). ArticleCAS Google Scholar
Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L. & Dyda, F. G. domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature465, 435–440 (2010). Reveals, through an analysis of the structure of a dynamin G domain–GED fusion protein, a need for dynamin G domain dimerization in mediating GTP hydrolysis and proposes that such dimerization occurs between rungs of the dynamin helix. ArticleCASPubMedPubMed Central Google Scholar
Faelber, K. et al. Crystal structure of nucleotide-free dynamin. Nature477, 561–566 (2011). ArticleCAS Google Scholar
Ford, M. G. J., Jenni, S. & Nunnari, J. The crystal structure of dynamin. Nature477, 556–560 (2011). Describes the first crystal structures of nearly full-length dynamin and reveals extensive interactions that support dynamin assembly into polymeric helices. ArticleCAS Google Scholar
Chappie, J. S. et al. A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell147, 209–222 (2011). Comparisons between dynamin G domain–GED fusion protein structures that mimic the GTP-bound state and ones that mimic a transition state suggest that large conformational changes accompany GTP hydrolysis. ArticleCASPubMedPubMed Central Google Scholar
Gao, S. et al. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature465, 502–506 (2010). ArticleCASPubMed Google Scholar
Bian, X. et al. Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc. Natl Acad. Sci. USA108, 3976–3981 (2011). ArticleCASPubMedPubMed Central Google Scholar
Byrnes, L. J. & Sondermann, H. Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc. Natl Acad. Sci. USA108, 2216–2221 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chappie, J. S. et al. A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell147, 209–222 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature398, 481–486 (1999). ArticleCASPubMed Google Scholar
Narayanan, R., Leonard, M., Song, B. D., Schmid, S. L. & Ramaswami, M. An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function. J. Cell Biol.169, 117–126 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Crystal structure at 2.2 Å resolution of the pleckstrin homology domain from human dynamin. Cell79, 199–209 (1994). ArticleCASPubMed Google Scholar
Zheng, J. et al. Identification of the binding site for acidic phospholipids on the PH domain of dynamin: implications for stimulation of GTPase activity. J. Mol. Biol.255, 14–21 (1996). ArticleCASPubMed Google Scholar
Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr. Biol.9, 261–264 (1999). ArticlePubMed Google Scholar
Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol.9, 257–260 (1999). ArticleCASPubMed Google Scholar
Bethoney, K. A., King, M. C., Hinshaw, J. E., Ostap, E. M. & Lemmon, M. A. A possible effector role for the pleckstrin homology (PH) domain of dynamin. Proc. Natl Acad. Sci. USA106, 13359–13364 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ramachandran, R. et al. Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. Mol. Biol. Cell20, 4630–4639 (2009). ArticleCASPubMedPubMed Central Google Scholar
Anggono, V. et al. Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nature Neurosci.9, 752–760 (2006). Finds that syndapin is the major dynamin-interacting protein in the brain and that this interaction is regulated by dynamin phosphorylation, potentially coupling this interaction to the activity status of neurons. ArticleCASPubMed Google Scholar
Grabs, D. et al. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J. Biol. Chem.272, 13419–13425 (1997). ArticleCASPubMed Google Scholar
Lundmark, R. & Carlsson, S. R. Regulated membrane recruitment of dynamin-2 mediated by sorting nexin 9. J. Biol. Chem.279, 42694–42702 (2004). ArticleCASPubMed Google Scholar
Shpetner, H. S., Herskovits, J. S. & Vallee, R. B. A binding site for SH3 domains targets dynamin to coated pits. J. Biol. Chem.271, 13–16 (1996). ArticleCASPubMed Google Scholar
Mooren, O. L., Kotova, T. I., Moore, A. J. & Schafer, D. A. Dynamin2 GTPase and cortactin remodel actin filaments. J. Biol. Chem.284, 23995–24005 (2009). ArticleCASPubMedPubMed Central Google Scholar
Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol.1, 27–32 (1999). ArticleCASPubMed Google Scholar
Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature441, 528–531 (2006). Visualizes dynamin-mediated membrane fission in anin vitroassay and reveals contributions by dynamin-mediated membrane constriction and membrane tension to membrane fission. ArticleCASPubMed Google Scholar
Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell93, 1021–1029 (1998). ArticleCASPubMed Google Scholar
Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell94, 131–141 (1998). ArticleCASPubMed Google Scholar
Ramachandran, R. et al. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J.26, 559–566 (2007). ArticleCASPubMed Google Scholar
Low, H. H. & Lowe, J. Dynamin architecture — from monomer to polymer. Curr. Opin. Struct. Biol.20, 791–798 (2010). ArticleCASPubMed Google Scholar
Wu, M. et al. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nature Cell Biol.12, 902–908 (2010). ArticleCASPubMed Google Scholar
Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell135, 1276–1286 (2008). Describes anin vitromembrane fission assay that suggests a role for repeated assembly and disassembly of short dynamin scaffolds in the triggering of membrane fission. ArticleCASPubMedPubMed Central Google Scholar
Danino, D., Moon, K. H. & Hinshaw, J. E. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J. Struct. Biol.147, 259–267 (2004). ArticleCASPubMed Google Scholar
Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell135, 1263–1275 (2008). Reports anin vitroassay that closely mimics thein vivosituation by allowing observation of dynamin-mediated membrane fission in the continuous presence of GTP, and reveals the fluctuating assembly and disassembly of dynamin leading up to membrane fission. ArticleCASPubMedPubMed Central Google Scholar
Ghosh, A., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature440, 101–104 (2006). ArticleCASPubMed Google Scholar
Binns, D. D. et al. The mechanism of GTP hydrolysis by dynamin II: a transient kinetic study. Biochemistry39, 7188–7196 (2000). ArticleCASPubMed Google Scholar
Krishnan, K. S. et al. Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron30, 197–210 (2001). ArticleCASPubMed Google Scholar
Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol.9, e1000604 (2011). Details a systematic analysis of the recruitment of a large collection of proteins to clathrin and their relationship to the membrane fission event. ArticleCASPubMedPubMed Central Google Scholar
Collins, A., Warrington, A., Taylor, K. A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol.21, 1167–1175 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chang-Ileto, B. et al. Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev. Cell20, 206–218 (2011). ArticleCASPubMedPubMed Central Google Scholar
Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol.155, 193–200 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nature Cell Biol.1, 33–39 (1999). ArticleCASPubMed Google Scholar
Huang, F., Khvorova, A., Marshall, W. & Sorkin, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J. Biol. Chem.279, 16657–16661 (2004). ArticleCASPubMed Google Scholar
Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nature Rev. Mol. Cell Biol.10, 583–596 (2009). ArticleCAS Google Scholar
Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol.15, 705–732 (1999). ArticleCASPubMed Google Scholar
Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol.7, e1000191 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell9, 791–804 (2005). ArticleCASPubMed Google Scholar
Perera, R. M., Zoncu, R., Lucast, L., De Camilli, P. & Toomre, D. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc. Natl Acad. Sci. USA103, 19332–19337 (2006). ArticleCASPubMedPubMed Central Google Scholar
Damke, H., Binns, D. D., Ueda, H., Schmid, S. L. & Baba, T. Dynamin GTPase domain mutants block endocytic vesicle formation at morphologically distinct stages. Mol. Biol. Cell12, 2578–2589 (2001). ArticleCASPubMedPubMed Central Google Scholar
Massol, R., Boll, W., Griffin, A. M. & Kirchhausen, T. burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc. Natl Acad. Sci. USA103, 10265–10270 (2006). ArticleCASPubMedPubMed Central Google Scholar
Barylko, B. et al. Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides. J. Biol. Chem273, 3791–3797 (1998). ArticleCASPubMed Google Scholar
Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc. Natl Acad. Sci. USA104, 3793–3798 (2007). ArticleCASPubMedPubMed Central Google Scholar
Conibear, E. Converging views of endocytosis in yeast and mammals. Curr. Opin. Cell Biol.22, 513–518 (2010). ArticleCASPubMed Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell123, 305–320 (2005). ArticleCASPubMed Google Scholar
Nannapaneni, S. et al. The yeast dynamin-like protein Vps1:vps1 mutations perturb the internalization and the motility of endocytic vesicles and endosomes via disorganization of the actin cytoskeleton. Eur. J. Cell Biol.89, 499–508 (2010). ArticleCASPubMed Google Scholar
Smaczynska-de, R. II. et al. Yeast dynamin Vps1 and amphiphysin Rvs167 function together during endocytosis. Traffic 14 Nov 2011 (doi:10.1111/j.1600-0854.2011.01311.x). ArticlePubMedCAS Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol.7, 404–414 (2006). ArticleCAS Google Scholar
Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nature Cell Biol.11, 1039–1042 (2009). ArticleCASPubMed Google Scholar
Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science296, 535–539 (2002). ArticleCASPubMed Google Scholar
Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol.141, 85–99 (1998). ArticleCASPubMedPubMed Central Google Scholar
Jones, S. M., Howell, K. E., Henley, J. R., Cao, H. & McNiven, M. A. Role of dynamin in the formation of transport vesicles from the _trans_-Golgi network. Science279, 573–577 (1998). ArticleCASPubMed Google Scholar
Derivery, E. et al. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell17, 712–723 (2009). ArticleCASPubMed Google Scholar
Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol.2, 125–127 (2000). ArticleCASPubMed Google Scholar
Mesaki, K., Tanabe, K., Obayashi, M., Oe, N. & Takei, K. Fission of tubular endosomes triggers endosomal acidification and movement. PloS ONE6, e19764 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. J. & Stevens, T. H. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell61, 1063–1074 (1990). ArticleCASPubMed Google Scholar
Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell16, 964–975 (2005). ArticleCASPubMedPubMed Central Google Scholar
Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nature Cell Biol.13, 1124–1131 (2011). ArticleCASPubMed Google Scholar
Krueger, E. W., Orth, J. D., Cao, H. & McNiven, M. A. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell14, 1085–1096 (2003). ArticleCASPubMedPubMed Central Google Scholar
Baldassarre, M. et al. Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol. Biol. Cell14, 1074–1084 (2003). ArticleCASPubMedPubMed Central Google Scholar
Orth, J. D., Krueger, E. W., Cao, H. & McNiven, M. A. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl Acad. Sci. USA99, 167–172 (2002). ArticleCASPubMedPubMed Central Google Scholar
Unsworth, K. E. et al. Dynamin is required for F-actin assembly and pedestal formation by enteropathogenic Escherichia coli (EPEC). Cell. Microbiol.9, 438–449 (2007). ArticleCASPubMed Google Scholar
Kubler, E. & Riezman, H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J.12, 2855–2862 (1993). ArticleCASPubMedPubMed Central Google Scholar
Gomez, T. S. et al. Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nature Immunol.6, 261–270 (2005). ArticleCAS Google Scholar
Yamada, H. et al. Dynasore, a dynamin inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments. Biochem. Biophys. Res. Commun.390, 1142–1148 (2009). ArticleCASPubMed Google Scholar
Tanabe, K. & Takei, K. Dynamic instability of microtubules requires dynamin 2 and is impaired in a Charcot–Marie–Tooth mutant. J. Cell Biol.185, 939–948 (2009). ArticleCASPubMedPubMed Central Google Scholar
Skop, A. R., Liu, H., Yates, J. 3rd, Meyer, B. J. & Heald, R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science305, 61–66 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chircop, M. et al. Phosphorylation of dynamin II at serine-764 is associated with cytokinesis. Biochim. Biophys. Acta1813, 1689–1699 (2011). ArticleCASPubMed Google Scholar
Thompson, H. M., Skop, A. R., Euteneuer, U., Meyer, B. J. & McNiven, M. A. The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr. Biol.12, 2111–2117 (2002). ArticleCASPubMedPubMed Central Google Scholar
Goss, J. W. & Toomre, D. K. Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J. Cell Biol.181, 1047–1054 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell123, 75–87 (2005). ArticleCASPubMed Google Scholar
Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J.26, 4215–4227 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tan, T. C. et al. Cdk5 is essential for synaptic vesicle endocytosis. Nature Cell Biol.5, 701–710 (2003). ArticleCASPubMed Google Scholar
Kashatus, D. F. et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nature Cell Biol.13, 1108–1115 (2011). ArticleCASPubMed Google Scholar
Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nature Rev. Mol. Cell Biol.10, 609–622 (2009). ArticleCAS Google Scholar
Sigismund, S. et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev. Cell15, 209–219 (2008). ArticleCASPubMed Google Scholar
Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science274, 2086–2089 (1996). ArticleCASPubMed Google Scholar
Polo, S. & Di Fiore, P. P. Endocytosis conducts the cell signaling orchestra. Cell124, 897–900 (2006). ArticleCASPubMed Google Scholar
Shen, H. et al. Constitutive activated Cdc42-associated kinase (Ack) phosphorylation at arrested endocytic clathrin-coated pits of cells that lack dynamin. Mol. Biol. Cell22, 493–502 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chircop, M. et al. Inhibition of dynamin by dynole 34–2 induces cell death following cytokinesis failure in cancer cells. Mol. Cancer Ther.10, 1553–1562 (2011). ArticleCASPubMed Google Scholar
Goldenthal, K. L., Pastan, I. & Willingham, M. C. Initial steps in receptor-mediated endocytosis. The influence of temperature on the shape and distribution of plasma membrane clathrin-coated pits in cultured mammalian cells. Exp. Cell Res.152, 558–564 (1984). ArticleCASPubMed Google Scholar
Dittman, J. & Ryan, T. A. Molecular circuitry of endocytosis at nerve terminals. Annu. Rev. Cell Dev. Biol.25, 133–160 (2009). ArticleCASPubMed Google Scholar
Newton, A. J., Kirchhausen, T. & Murthy, V. N. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl Acad. Sci. USA103, 17955–17960 (2006). ArticleCASPubMedPubMed Central Google Scholar
Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science276, 259–263 (1997). ArticleCASPubMed Google Scholar
Sundborger, A. et al. An endophilin–dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. J. Cell Sci.124, 133–143 (2011). ArticleCASPubMed Google Scholar
Xu, J. et al. GTP-independent rapid and slow endocytosis at a central synapse. Nature Neurosci.11, 45–53 (2008). ArticleCASPubMed Google Scholar
Yamashita, T., Hige, T. & Takahashi, T. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science307, 124–127 (2005). ArticleCASPubMed Google Scholar
Lou, X., Paradise, S., Ferguson, S. M. & De Camilli, P. Selective saturation of slow endocytosis at a giant glutamatergic central synapse lacking dynamin 1. Proc. Natl Acad. Sci. USA105, 17555–17560 (2008). ArticleCASPubMedPubMed Central Google Scholar
Isaka, F. et al. Ectopic expression of the bHLH gene Math1 disturbs neural development. Eur. J. Neurosci.11, 2582–2588 (1999). ArticleCASPubMed Google Scholar
Dewachter, I. et al. Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J. Neurosci.22, 3445–3453 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cousin, M. A. & Robinson, P. J. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci.24, 659–665 (2001). ArticleCASPubMed Google Scholar
Lee, S. Y., Wenk, M. R., Kim, Y., Nairn, A. C. & De Camilli, P. Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc. Natl Acad. Sci. USA101, 546–551 (2004). ArticleCASPubMedPubMed Central Google Scholar
McPherson, P. S., Takei, K., Schmid, S. L. & De Camilli, P. p145, a major Grb2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity-dependent dephosphorylation. J. Biol. Chem.269, 30132–30139 (1994). ArticleCASPubMed Google Scholar
Lu, J. et al. Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to Homer. Neuron55, 874–889 (2007). ArticleCASPubMedPubMed Central Google Scholar
Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl Acad. Sci. USA96, 14112–14117 (1999). ArticleCASPubMedPubMed Central Google Scholar
Perez-Otano, I. et al. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nature Neurosci.9, 611–621 (2006). ArticleCASPubMed Google Scholar
Hayashi, M. et al. Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc. Natl Acad. Sci. USA105, 2175–2180 (2008). ArticleCASPubMedPubMed Central Google Scholar
Clayton, E. L. et al. The phospho-dependent dynamin-syndapin interaction triggers activity-dependent bulk endocytosis of synaptic vesicles. J. Neurosci.29, 7706–7717 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot–Marie–Tooth disease. Nature Genet.37, 289–294 (2005). ArticlePubMedCAS Google Scholar
Bitoun, M. et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nature Genet.37, 1207–1209 (2005). ArticleCASPubMed Google Scholar
Durieux, A. C., Prudhon, B., Guicheney, P. & Bitoun, M. Dynamin 2 and human diseases. J. Mol. Med.88, 339–350 (2010). ArticlePubMed Google Scholar
Nicot, A. S. et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nature Genet.39, 1134–1139 (2007). ArticleCASPubMed Google Scholar
Lee, E. et al. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science297, 1193–1196 (2002). ArticleCASPubMed Google Scholar
Boumil, R. M. et al. A missense mutation in a highly conserved alternate exon of dynamin-1 causes epilepsy in fitful mice. PLoS Genet.6, e1001046 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Di Paolo, G. et al. Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. Neuron33, 789–804 (2002). ArticleCASPubMed Google Scholar
Koch, D. et al. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J.30, 4955–4969 (2011). ArticleCASPubMedPubMed Central Google Scholar
Milosevic, I. et al. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron72, 587–601 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fassio, A. et al. SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum. Mol. Genet.20, 2297–2307 (2011). ArticleCASPubMed Google Scholar
Patterson, E. E. et al. A canine DNM1 mutation is highly associated with the syndrome of exercise-induced collapse. Nature Genet.40, 1235–1239 (2008). ArticleCASPubMed Google Scholar
Donaldson, J. G. & Jackson, C. L. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature Rev. Mol. Cell Biol.12, 362–375 (2011). ArticleCAS Google Scholar
Detmer, S. A. & Chan, D. C. Functions and dysfunctions of mitochondrial dynamics. Nature Rev. Mol. Cell Biol.8, 870–879 (2007). ArticleCAS Google Scholar
Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem.76, 751–780 (2007). ArticleCASPubMed Google Scholar
Okamoto, K. & Shaw, J. M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet.39, 503–536 (2005). ArticleCASPubMed Google Scholar
Westermann, B. Mitochondrial fusion and fission in cell life and death. Nature Rev. Mol. Cell Biol.11, 872–884 (2010). ArticleCAS Google Scholar
Eppinga, R. D. et al. Increased expression of the large GTPase dynamin 2 potentiates metastatic migration and invasion of pancreatic ductal carcinoma. Oncogene 15 Aug 2011 (doi:10.1038/onc.2011.329). ArticlePubMedPubMed CentralCAS Google Scholar
Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genet.43, 429–435 (2011). ArticleCASPubMed Google Scholar
Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genet.43, 436–441 (2011). ArticleCASPubMed Google Scholar
Orso, G. et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature460, 978–983 (2009). ArticleCASPubMed Google Scholar
Haller, O., Gao, S., von der Malsburg, A., Daumke, O. & Kochs, G. Dynamin-like MxA GTPase: structural insights into oligomerization and implications for antiviral activity. J. Biol. Chem285, 28419–28424 (2010). ArticleCASPubMedPubMed Central Google Scholar
Prakash, B., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature403, 567–571 (2000). ArticleCASPubMed Google Scholar
Gu, X. & Verma, D. P. Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J.15, 695–704 (1996). ArticleCASPubMedPubMed Central Google Scholar
Low, H. H., Sachse, C., Amos, L. A. & Lowe, J. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell139, 1342–1352 (2009). ArticlePubMedPubMed Central Google Scholar
Miyagishima, S. Y. et al. A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell15, 655–665 (2003). ArticleCASPubMedPubMed Central Google Scholar
Daumke, O. et al. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature449, 923–927 (2007). ArticleCASPubMed Google Scholar
Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature Genet.26, 207–210 (2000). ArticleCASPubMed Google Scholar
Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nature Genet.36, 449–451 (2004). ArticlePubMedCAS Google Scholar
Zhao, X. et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nature Genet.29, 326–331 (2001). ArticleCASPubMed Google Scholar
Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med.356, 1736–1741 (2007). ArticleCASPubMed Google Scholar
Baumgart, T., Capraro, B. R., Zhu, C. & Das, S. L. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem.62, 483–506 (2011). ArticleCASPubMedPubMed Central Google Scholar
Farsad, K. & De Camilli, P. Mechanisms of membrane deformation. Curr. Opin. Cell Biol.15, 372–381 (2003). ArticleCASPubMed Google Scholar
Antonny, B. Membrane deformation by protein coats. Curr. Opin. Cell Biol.18, 386–394 (2006). ArticleCASPubMed Google Scholar
McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature438, 590–596 (2005). ArticleCASPubMed Google Scholar
Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science303, 495–499 (2004). ArticleCASPubMed Google Scholar
Shimada, A. et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell129, 761–772 (2007). ArticleCASPubMed Google Scholar
Wang, Q. et al. Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein pacsin/syndapin. Proc. Natl Acad. Sci. USA106, 12700–12705 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rao, Y. et al. Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation. Proc. Natl Acad. Sci. USA107, 8213–8218 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cipolat, S., Martins de Brito, O., Dal Zilio, B. & Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl Acad. Sci. USA101, 15927–15932 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gao, S. et al. Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity35, 514–525 (2011). ArticleCASPubMed Google Scholar
Kim, B. H. et al. A family of IFN-γ–inducible 65-kD GTPases protects against bacterial infection. Science332, 717–721 (2011). ArticleCASPubMed Google Scholar
MacMicking, J. D. IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol.25, 601–609 (2004). ArticleCASPubMed Google Scholar
Gao, H., Kadirjan-Kalbach, D., Froehlich, J. E. & Osteryoung, K. W. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc. Natl Acad. Sci. USA100, 4328–4333 (2003). ArticleCASPubMedPubMed Central Google Scholar
Glynn, J. M., Miyagishima, S. Y., Yoder, D. W., Osteryoung, K. W. & Vitha, S. Chloroplast division. Traffic8, 451–461 (2007). ArticleCASPubMed Google Scholar
Vater, C. A., Raymond, C. K., Ekena, K., Howald-Stevenson, I. & Stevens, T. H. The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in Saccharomyces cerevisiae, is a GTPase with two functionally separable domains. J. Cell Biol.119, 773–786 (1992). ArticleCASPubMed Google Scholar