Euclidean distance (original) (raw)

About DBpedia

En matemàtiques, la distància euclidiana o mètrica euclidiana és la distància ordinària entre dos punts que es mesuraria amb un regle, i ve donada per la fórmula o teorema de Pitàgores. Utilitzant aquesta fórmula com a distància, l'espai euclidià (o qualsevol espai amb produce interior) esdevé un espai mètric. La norma associada s'anomena la norma euclidiana. La literatura antiga es refereix a aquesta mètrica com la mètrica pitagòrica.

thumbnail

Property Value
dbo:abstract En matemàtiques, la distància euclidiana o mètrica euclidiana és la distància ordinària entre dos punts que es mesuraria amb un regle, i ve donada per la fórmula o teorema de Pitàgores. Utilitzant aquesta fórmula com a distància, l'espai euclidià (o qualsevol espai amb produce interior) esdevé un espai mètric. La norma associada s'anomena la norma euclidiana. La literatura antiga es refereix a aquesta mètrica com la mètrica pitagòrica. (ca) في الرياضيات، المسافة الإقليدية هي المسافة العادية بين نقطتين التي يكون من الممكن قياسها باستخدام المسطرة والتي من الممكن برهانها باستخدام مبرهنة فيثاغورس. باستخدام هذه المسافة فإن الفضاء الإقليدي يصبح فضاء متري (وربما فضاء هلبرت). يشار لهذه المسافة أيضاً باسم 'المسافة الفيثاغورسية. (ar) Euklidovská metrika je metrika daná vztahem ,kde a jsou vektory o stejném počtu prvků. Na reálné ose (jednorozměrný Eukleidovský prostor) je eukleidovská vzdálenost bodů rovna absolutní hodnotě vzdálenosti bodů: (cs) Η ευκλείδεια μετρική είναι η συνάρτηση που αντιστοιχεί σε δύο διανύσματα του διάστατου διανυσματικού χώρου , στον αριθμό Η συνάρτηση μετράει τη "συνήθη" (ευκλείδεια) απόσταση μεταξύ δύο σημείων στον επίπεδο , διάστατο χώρο κάνοντας επανειλημμένη χρήση του Πυθαγόρειου θεωρήματος. (el) Der euklidische Abstand ist der Abstandsbegriff der euklidischen Geometrie. Der euklidische Abstand zweier Punkte in der Ebene oder im Raum ist die zum Beispiel mit einem Lineal gemessene Länge einer Strecke, die diese zwei Punkte verbindet. Dieser Abstand ist invariant unter Bewegungen (Kongruenzabbildungen). In kartesischen Koordinaten kann der euklidische Abstand mit Hilfe des Satzes von Pythagoras berechnet werden.Mit Hilfe der so gewonnenen Formel kann der Begriff des euklidischen Abstands auf -dimensionale euklidische und unitäre Vektorräume, euklidische Punkträume und Koordinatenräume verallgemeinert werden. „Euklidisch“ heißt dieser Abstand in Abgrenzung zu allgemeineren Abstandsbegriffen, wie zum Beispiel: * dem der hyperbolischen Geometrie, * dem der riemannschen Geometrie, * Abständen in normierten Vektorräumen, * Abständen in beliebigen metrischen Räumen. (de) En matematiko la eŭklida distanco aŭ eŭklida metriko estas la "ordinara" distanco inter du punktoj, mezurebla per rektilo. Tiu distanco estas invarianta sub turnado (rotacio) de la koordinata sistemo, kio povas esti pruvita per ripetita apliko de la pitagora teoremo. Per uzo de tiu formulo kiel distanco, eŭklida spaco iĝas metrika spaco, eĉ hilberta spaco. Pli malnova literaturo nomas tiun metrikon pitagora metriko. (eo) In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century. The distance between two objects that are not points is usually defined to be the smallest distance among pairs of points from the two objects. Formulas are known for computing distances between different types of objects, such as the distance from a point to a line. In advanced mathematics, the concept of distance has been generalized to abstract metric spaces, and other distances than Euclidean have been studied. In some applications in statistics and optimization, the square of the Euclidean distance is used instead of the distance itself. (en) En matemáticas, la distancia euclidiana o euclídea, es la distancia "ordinaria" entre dos puntos de un espacio euclídeo, la cual se deduce a partir del teorema de Pitágoras. Por ejemplo, en un espacio bidimensional, la distancia euclidiana entre dos puntos P1 y P2, de coordenadas cartesianas (x1, y1) y (x2, y2) respectivamente, es: (es) Dalam matematika, jarak Euklides atau metrik Euklides adalah jarak garis lurus "biasa" antara dua titik dalam ruang Euklides. Dengan jarak ini, ruang Euklides menjadi ruang metrik. Norma yang terkait disebut norma Euklides. Literatur lampau menyebutnya dengan metrik Pythagoras. Bentuk umum dari norma Euklides adalah norma L2 atau jarak L2. (in) 数学におけるユークリッド距離(ユークリッドきょり、英: Euclidean distance)またはユークリッド計量(ユークリッドけいりょう、英: Euclidean metric; ユークリッド距離函数)とは、人が定規で測るような二点間の「通常の」距離のことであり、ピタゴラスの公式によって与えられる。この公式を距離函数として用いればユークリッド空間は距離空間となる。ユークリッド距離に付随するノルムはユークリッドノルムと呼ばれる。古い書籍などはピタゴラス計量(英: Pythagorean metric)と呼んでいることがある。 (ja) 유클리드 거리(Euclidean distance)는 두 점 사이의 거리를 계산할 때 흔히 쓰는 방법이다. 이 거리를 사용하여 유클리드 공간을 정의할 수 있으며, 이 거리에 대응하는 노름을 유클리드 노름(Euclidean norm)이라고 부른다. (ko) In matematica, la distanza euclidea è una distanza tra due punti, in particolare è una misura della lunghezza del segmento avente per estremi i due punti. Usando questa distanza, lo spazio euclideo diventa uno spazio metrico (più in particolare risulta uno spazio di Hilbert). La letteratura tradizionale si riferisce a questa metrica come metrica pitagorica. (it) Em matemática, distância euclidiana é a distância entre dois pontos, que pode ser provada pela aplicação repetida do teorema de Pitágoras. Aplicando essa fórmula como distância, o espaço euclidiano torna-se um espaço métrico. (pt) Met de gewone metriek of euclidische afstandsfunctie wordt de afbeelding gegeven door: waarbij voor , dus is de euclidische norm. Hierbij is V een verzameling getallen, bijvoorbeeld of , of vectoren, bijvoorbeeld . (nl) Евклидова метрика (евклидово расстояние) — метрика в евклидовом пространстве — расстояние между двумя точками евклидова пространства, вычисляемое по теореме Пифагора. Для точек и евклидово расстояние определяется следующим образом: . Евклидова метрика — наиболее естественная функция расстояния, возникающая в геометрии, отражающая интуитивные свойства расстояния между точками. При этом существуют и другие метрики в евклидовых пространствах, применяемые как в геометрии, так и в приложениях. Параметрическое расстояние Минковского является обобщением некоторых из этих метрик, при параметре со значением 2 оно обращается в евклидову метрику. (ru) Евклідова відстань (Евклідова метрика) — формула традиційної відстані між двома точками та для Евклідового простору: Позначається Пов'язана з нею норма називається — Евклідова норма. (uk) 在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间“普通”(即直线)距离。使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。 (zh)
dbo:thumbnail wiki-commons:Special:FilePath/Euclidean_distance_2d.svg?width=300
dbo:wikiPageID 53932 (xsd:integer)
dbo:wikiPageLength 23542 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1119874995 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cartesian_coordinates dbr:Beckman–Quarles_theorem dbr:Probability_distribution dbr:Proportionality_(mathematics) dbr:Pythagoras dbr:Quadrilateral dbr:Minkowski_distance dbr:Monotonic_function dbc:Length dbr:History_of_geodesy dbr:René_Descartes dbr:Vector_space dbr:Dvoretzky's_theorem dbr:Line_segment dbr:Ptolemy's_inequality dbr:Complex_number dbr:Complex_plane dbr:Cone dbr:Convex_analysis dbr:Mathematical_optimization dbr:Mathematics dbr:Neighbourhood_(mathematics) dbr:Norm_(mathematics) dbr:Origin_(mathematics) dbr:Pythagorean_addition dbr:Geodesic dbr:Congruence_(geometry) dbr:Convex_function dbr:Lp_space dbr:Statistics dbr:Cluster_analysis dbr:Point_(geometry) dbr:Augustin-Louis_Cauchy dbr:Triangle_inequality dbr:Distance dbr:Distance_from_a_point_to_a_plane dbr:Distance_geometry dbr:Hausdorff_distance dbr:Least_squares dbr:Haversine_distance dbr:Absolute_value dbr:Alexis_Clairaut dbc:Pythagorean_theorem dbr:Euclid dbr:Euclid's_Elements dbr:Euclidean_distance_matrix dbr:Euclidean_space dbr:Non-Euclidean_geometry dbr:Paraboloid dbr:Chebyshev_distance dbr:Graph_of_a_function dbr:Length dbr:Pythagorean_theorem dbr:Isometry dbr:Absolute_difference dbc:Distance dbc:Metric_geometry dbr:Law_of_cosines dbr:Sumer dbr:Distance_from_a_point_to_a_line dbr:Divergence_(statistics) dbr:Polar_coordinate_system dbr:Positive_number dbr:Square_(algebra) dbr:Square_root dbr:Metric_space dbr:Manhattan_distance dbr:Skew_lines dbr:Euclidean_plane dbr:Euclidean_topology dbr:Complex_norm dbr:Vincenty's_formulae dbr:Real_line dbr:Normed_vector_space dbr:Topological_space dbr:Sum_of_squares dbr:Right_triangle dbr:Cartesian_coordinate dbr:Open_ball dbr:Optimization_theory dbr:File:Euclidean_distance_2d.svg dbr:File:Euclidean_distance_3d_2_cropped.png
dbp:caption A cone, the graph of Euclidean distance from the origin in the plane (en) A paraboloid, the graph of squared Euclidean distance from the origin (en)
dbp:image 3 (xsd:integer)
dbp:wikiPageUsesTemplate dbt:Good_article dbt:Multiple_image dbt:Reflist dbt:Short_description dbt:Use_American_English dbt:Use_mdy_dates
dcterms:subject dbc:Length dbc:Pythagorean_theorem dbc:Distance dbc:Metric_geometry
rdf:type yago:WikicatStringSimilarityMeasures yago:Abstraction100002137 yago:Act100030358 yago:Action100037396 yago:Choice100161243 yago:Decision100162632 yago:Event100029378 yago:Maneuver100168237 yago:Measure100174412 yago:Move100165942 yago:PsychologicalFeature100023100 yago:YagoPermanentlyLocatedEntity
rdfs:comment En matemàtiques, la distància euclidiana o mètrica euclidiana és la distància ordinària entre dos punts que es mesuraria amb un regle, i ve donada per la fórmula o teorema de Pitàgores. Utilitzant aquesta fórmula com a distància, l'espai euclidià (o qualsevol espai amb produce interior) esdevé un espai mètric. La norma associada s'anomena la norma euclidiana. La literatura antiga es refereix a aquesta mètrica com la mètrica pitagòrica. (ca) في الرياضيات، المسافة الإقليدية هي المسافة العادية بين نقطتين التي يكون من الممكن قياسها باستخدام المسطرة والتي من الممكن برهانها باستخدام مبرهنة فيثاغورس. باستخدام هذه المسافة فإن الفضاء الإقليدي يصبح فضاء متري (وربما فضاء هلبرت). يشار لهذه المسافة أيضاً باسم 'المسافة الفيثاغورسية. (ar) Euklidovská metrika je metrika daná vztahem ,kde a jsou vektory o stejném počtu prvků. Na reálné ose (jednorozměrný Eukleidovský prostor) je eukleidovská vzdálenost bodů rovna absolutní hodnotě vzdálenosti bodů: (cs) Η ευκλείδεια μετρική είναι η συνάρτηση που αντιστοιχεί σε δύο διανύσματα του διάστατου διανυσματικού χώρου , στον αριθμό Η συνάρτηση μετράει τη "συνήθη" (ευκλείδεια) απόσταση μεταξύ δύο σημείων στον επίπεδο , διάστατο χώρο κάνοντας επανειλημμένη χρήση του Πυθαγόρειου θεωρήματος. (el) En matematiko la eŭklida distanco aŭ eŭklida metriko estas la "ordinara" distanco inter du punktoj, mezurebla per rektilo. Tiu distanco estas invarianta sub turnado (rotacio) de la koordinata sistemo, kio povas esti pruvita per ripetita apliko de la pitagora teoremo. Per uzo de tiu formulo kiel distanco, eŭklida spaco iĝas metrika spaco, eĉ hilberta spaco. Pli malnova literaturo nomas tiun metrikon pitagora metriko. (eo) En matemáticas, la distancia euclidiana o euclídea, es la distancia "ordinaria" entre dos puntos de un espacio euclídeo, la cual se deduce a partir del teorema de Pitágoras. Por ejemplo, en un espacio bidimensional, la distancia euclidiana entre dos puntos P1 y P2, de coordenadas cartesianas (x1, y1) y (x2, y2) respectivamente, es: (es) Dalam matematika, jarak Euklides atau metrik Euklides adalah jarak garis lurus "biasa" antara dua titik dalam ruang Euklides. Dengan jarak ini, ruang Euklides menjadi ruang metrik. Norma yang terkait disebut norma Euklides. Literatur lampau menyebutnya dengan metrik Pythagoras. Bentuk umum dari norma Euklides adalah norma L2 atau jarak L2. (in) 数学におけるユークリッド距離(ユークリッドきょり、英: Euclidean distance)またはユークリッド計量(ユークリッドけいりょう、英: Euclidean metric; ユークリッド距離函数)とは、人が定規で測るような二点間の「通常の」距離のことであり、ピタゴラスの公式によって与えられる。この公式を距離函数として用いればユークリッド空間は距離空間となる。ユークリッド距離に付随するノルムはユークリッドノルムと呼ばれる。古い書籍などはピタゴラス計量(英: Pythagorean metric)と呼んでいることがある。 (ja) 유클리드 거리(Euclidean distance)는 두 점 사이의 거리를 계산할 때 흔히 쓰는 방법이다. 이 거리를 사용하여 유클리드 공간을 정의할 수 있으며, 이 거리에 대응하는 노름을 유클리드 노름(Euclidean norm)이라고 부른다. (ko) In matematica, la distanza euclidea è una distanza tra due punti, in particolare è una misura della lunghezza del segmento avente per estremi i due punti. Usando questa distanza, lo spazio euclideo diventa uno spazio metrico (più in particolare risulta uno spazio di Hilbert). La letteratura tradizionale si riferisce a questa metrica come metrica pitagorica. (it) Em matemática, distância euclidiana é a distância entre dois pontos, que pode ser provada pela aplicação repetida do teorema de Pitágoras. Aplicando essa fórmula como distância, o espaço euclidiano torna-se um espaço métrico. (pt) Met de gewone metriek of euclidische afstandsfunctie wordt de afbeelding gegeven door: waarbij voor , dus is de euclidische norm. Hierbij is V een verzameling getallen, bijvoorbeeld of , of vectoren, bijvoorbeeld . (nl) Евклідова відстань (Евклідова метрика) — формула традиційної відстані між двома точками та для Евклідового простору: Позначається Пов'язана з нею норма називається — Евклідова норма. (uk) 在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间“普通”(即直线)距离。使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。 (zh) Der euklidische Abstand ist der Abstandsbegriff der euklidischen Geometrie. Der euklidische Abstand zweier Punkte in der Ebene oder im Raum ist die zum Beispiel mit einem Lineal gemessene Länge einer Strecke, die diese zwei Punkte verbindet. Dieser Abstand ist invariant unter Bewegungen (Kongruenzabbildungen). „Euklidisch“ heißt dieser Abstand in Abgrenzung zu allgemeineren Abstandsbegriffen, wie zum Beispiel: * dem der hyperbolischen Geometrie, * dem der riemannschen Geometrie, * Abständen in normierten Vektorräumen, * Abständen in beliebigen metrischen Räumen. (de) In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century. (en) Евклидова метрика (евклидово расстояние) — метрика в евклидовом пространстве — расстояние между двумя точками евклидова пространства, вычисляемое по теореме Пифагора. Для точек и евклидово расстояние определяется следующим образом: . (ru)
rdfs:label مسافة إقليدية (ar) Distància euclidiana (ca) Eukleidovská metrika (cs) Euklidischer Abstand (de) Ευκλείδεια μετρική (el) Eŭklida distanco (eo) Distancia euclidiana (es) Jarak Euklides (in) Euclidean distance (en) Distanza euclidea (it) ユークリッド距離 (ja) 유클리드 거리 (ko) Gewone metriek (nl) Евклидова метрика (ru) Distância euclidiana (pt) 欧几里得距离 (zh) Евклідова відстань (uk)
owl:sameAs freebase:Euclidean distance wikidata:Euclidean distance dbpedia-ar:Euclidean distance dbpedia-az:Euclidean distance http://bs.dbpedia.org/resource/Euklidska_udaljenost dbpedia-ca:Euclidean distance dbpedia-cs:Euclidean distance http://cv.dbpedia.org/resource/Евклидла_метрика dbpedia-de:Euclidean distance dbpedia-el:Euclidean distance dbpedia-eo:Euclidean distance dbpedia-es:Euclidean distance dbpedia-fa:Euclidean distance dbpedia-fi:Euclidean distance dbpedia-id:Euclidean distance dbpedia-it:Euclidean distance dbpedia-ja:Euclidean distance dbpedia-ko:Euclidean distance dbpedia-nl:Euclidean distance dbpedia-pt:Euclidean distance dbpedia-ro:Euclidean distance dbpedia-ru:Euclidean distance http://scn.dbpedia.org/resource/Distanza dbpedia-sh:Euclidean distance http://si.dbpedia.org/resource/යුක්ලිඩියානු_දුර dbpedia-simple:Euclidean distance dbpedia-sr:Euclidean distance http://ta.dbpedia.org/resource/யூக்ளிடிய_தொலைவு dbpedia-th:Euclidean distance dbpedia-tr:Euclidean distance dbpedia-uk:Euclidean distance http://ur.dbpedia.org/resource/فاصلہ_(ریاضی) dbpedia-vi:Euclidean distance dbpedia-zh:Euclidean distance https://global.dbpedia.org/id/4zz9W
prov:wasDerivedFrom wikipedia-en:Euclidean_distance?oldid=1119874995&ns=0
foaf:depiction wiki-commons:Special:FilePath/3d-function-2.svg wiki-commons:Special:FilePath/3d-function-5.svg wiki-commons:Special:FilePath/Euclidean_distance_2d.svg wiki-commons:Special:FilePath/Euclidean_distance_3d_2_cropped.png
foaf:isPrimaryTopicOf wikipedia-en:Euclidean_distance
is dbo:wikiPageDisambiguates of dbr:Euclidean
is dbo:wikiPageRedirects of dbr:Euclidean_measure dbr:Euclidean_metric dbr:Euclidian_distance dbr:Euclidean_Distance dbr:Distance_Formula_(coordinate_geometry) dbr:Squared_Euclidean_distance dbr:Distance_formula dbr:Distance_formula_(coordinate_geometry) dbr:Pythagorean_distance dbr:Pythagorean_metric dbr:Geometric_distance
is dbo:wikiPageWikiLink of dbr:Cartesian_coordinate_system dbr:Beckman–Quarles_theorem dbr:Metamerism_(color) dbr:Minimum_distance dbr:Minkowski_distance dbr:Motion_(geometry) dbr:Nearest_neighbor_search dbr:Neighbourhood_components_analysis dbr:Stochastic_geometry_models_of_wireless_networks dbr:Euclidean_measure dbr:Euclidean_metric dbr:Euclidian_distance dbr:Alignment-free_sequence_analysis dbr:Approximate_Bayesian_computation dbr:Arc_length dbr:Pathfinding dbr:Resistance_distance dbr:Rigid_transformation dbr:Curse_of_dimensionality dbr:Curvature_of_Space_and_Time,_with_an_Introduction_to_Geometric_Analysis dbr:Curve_of_constant_width dbr:Unit_distance_graph dbr:Variance dbr:Vojtěch_Jarník dbr:Davies–Bouldin_index dbr:De_Bruijn–Erdős_theorem_(graph_theory) dbr:Decoding_methods dbr:Delaunay_triangulation dbr:Double_auction dbr:Dunn_index dbr:Inverse_square_potential dbr:Involutory_matrix dbr:Line_segment dbr:Sierpiński_curve dbr:Levenshtein_distance dbr:Limit_of_a_function dbr:List_of_geometry_topics dbr:OSA-UCS dbr:Peano_kernel_theorem dbr:PowWow dbr:Sparse_distributed_memory dbr:Ptolemy's_inequality dbr:Zone_diagram dbr:120-cell dbr:1731_in_science dbr:Color_rendering_index dbr:Cosine_similarity dbr:Mean_line_segment_length dbr:Chemical_database dbr:Chi_distribution dbr:Gene_co-expression_network dbr:Geometric_spanner dbr:Nearest_neighbor_graph dbr:Norm_(mathematics) dbr:Normal_(geometry) dbr:Private_biometrics dbr:Rocchio_algorithm dbr:Rectilinear_Steiner_tree dbr:Spectral_flux dbr:Pyramid_vector_quantization dbr:Pythagorean_addition dbr:Radial_basis_function_network dbr:Coastline_paradox dbr:Generalised_circle dbr:Geometric_median dbr:GloVe dbr:Glossary_of_computer_graphics dbr:Gravitational_potential dbr:Bottleneck_traveling_salesman_problem dbr:Bounded_set dbr:Minkowski_space dbr:Concentration_dimension dbr:Conformal_radius dbr:Congruence_(geometry) dbr:Constellation_diagram dbr:Convolutional_neural_network dbr:Equilateral_dimension dbr:Erdős–Ulam_problem dbr:Optical_path dbr:Antiprism dbr:Apache_SystemDS dbr:Levi-Civita_connection dbr:Limit_(mathematics) dbr:Line_(geometry) dbr:Magic_(software) dbr:Silhouette_(clustering) dbr:Similarity_(geometry) dbr:Slope dbr:Stanislaw_Ulam dbr:Steiner_tree_problem dbr:Suitability_analysis dbr:Cluster_labeling dbr:Color_difference dbr:Color_quantization dbr:Complete_metric_space dbr:Feature_scaling dbr:Hellinger_distance dbr:Lepage_test dbr:Machine_learning_in_bioinformatics dbr:Mahalanobis_distance dbr:T-distributed_stochastic_neighbor_embedding dbr:Unit_sphere dbr:Matérn_covariance_function dbr:Medoid dbr:Microarray_analysis_techniques dbr:Backpropagation dbr:CIELAB_color_space dbr:Adele_ring dbr:Topological_group dbr:Travelling_salesman_problem dbr:True-range_multilateration dbr:U-matrix dbr:Weak_ordering dbr:Distance dbr:Distance_from_a_point_to_a_plane dbr:Distance_matrices_in_phylogeny dbr:Distance_measure dbr:Distance_transform dbr:Distortion_(optics) dbr:Divine_Proportions:_Rational_Trigonometry_to_Universal_Geometry dbr:Hedgehog_space dbr:Irrational_number dbr:Euclidean_Distance dbr:K-means_clustering dbr:K-medians_clustering dbr:K-medoids dbr:K-minimum_spanning_tree dbr:Lattice_problem dbr:Learning_vector_quantization dbr:Line_integral dbr:Lloyd's_algorithm dbr:Philo_line dbr:Reprojection_error dbr:24-cell dbr:3D_rotation_group dbr:A*_search_algorithm dbr:Absolute_value dbr:Affine_space dbr:Affine_transformation dbr:Cylindrical_coordinate_system dbr:DBSCAN dbr:Euclidean_minimum_spanning_tree dbr:Food_desert dbr:Four-dimensional_space dbr:Ball_tree dbr:Barrow's_inequality dbr:British_flag_theorem dbr:Non-Euclidean_geometry dbr:Capsule_neural_network dbr:Cauchy–Binet_formula dbr:Cayley_configuration_space dbr:Cayley–Menger_determinant dbr:Centered_octahedral_number dbr:Chebyshev_center dbr:Falconer's_conjecture dbr:Force-directed_graph_drawing dbr:Graham_scan dbr:Graph_flattenability dbr:Isomap dbr:Knight's_graph dbr:Knowledge_graph_embedding dbr:Pythagorean_theorem dbr:RGB_color_model dbr:Reuleaux_triangle dbr:Hamming_distance dbr:Hash_table dbr:Auction dbr:Ion_Barbu dbr:Jacobian_matrix_and_determinant dbr:Margin_classifier dbr:Sample_entropy dbr:Accessibility_(transport) dbr:Affine_plane dbr:K-nearest_neighbors_algorithm dbr:L1-norm_principal_component_analysis dbr:Laves_graph dbr:Bivector dbr:Surveying dbr:Eigenface dbr:Hierarchical_clustering dbr:Homogeneous_polynomial dbr:Yao_graph dbr:Redundancy_principle_(biology) dbr:Diffeomorphometry dbr:Disk_(mathematics) dbr:Distance_Formula_(coordinate_geometry) dbr:Distance_correlation dbr:Distance_from_a_point_to_a_line dbr:Distance_matrix dbr:Autonomous_mobility_on_demand dbr:Bug_algorithm dbr:CIELUV dbr:CIE_1964_color_space dbr:Poincaré_half-plane_model dbr:Point-set_registration dbr:Polar_decomposition dbr:Spherical_coordinate_system dbr:Square_root dbr:Circular_mean dbr:Greedy_geometric_spanner dbr:Metric_space dbr:Metric_tensor dbr:Open_set dbr:Cartesian_oval dbr:Radial_basis_function dbr:Radial_basis_function_kernel dbr:Random_geometric_graph dbr:Shapley–Folkman_lemma dbr:Magnitude_(mathematics) dbr:Mean_squared_error dbr:Minimum-shift_keying dbr:Rotation_(mathematics) dbr:Multidimensional_scaling dbr:Scalar_(physics) dbr:Scale-invariant_feature_transform dbr:Self-organizing_map dbr:Similarity_(network_science) dbr:Similarity_measure dbr:Voronoi_diagram dbr:Weighted_Voronoi_diagram dbr:Polydisc dbr:Siamese_neural_network dbr:Trajectory_inference dbr:Euclidean dbr:Euclidean_geometry dbr:Euclidean_group dbr:Euclidean_plane dbr:Euclidean_plane_isometry dbr:Euclidean_topology dbr:Extremal_length dbr:List_of_terms_relating_to_algorithms_and_data_structures dbr:List_of_things_named_after_Euclid dbr:List_of_topologies dbr:Prince_Rupert's_cube dbr:Viterbi_decoder dbr:Flat_(geometry) dbr:NM-method dbr:Weierstrass_transform dbr:Multiple_trace_theory dbr:Multipole_radiation dbr:Structural_bioinformatics dbr:Ward's_method dbr:Semantic_folding dbr:Sinuosity dbr:Noncentral_chi-squared_distribution dbr:Nonlinear_dimensionality_reduction dbr:Normed_vector_space dbr:Trilateration dbr:Signal-to-interference-plus-noise_ratio dbr:Spatial_network dbr:Paraphrasing_(computational_linguistics) dbr:Smartvote dbr:Set-theoretic_limit dbr:Sørensen–Dice_coefficient dbr:Trace_distance dbr:Sum_of_radicals dbr:Stress_majorization dbr:Rational_quadratic_covariance_function dbr:Unit_disk dbr:Triplet_loss dbr:Stretch_factor dbr:Term_discrimination dbr:Spatial_analysis dbr:Squared_Euclidean_distance dbr:Distance_formula dbr:Distance_formula_(coordinate_geometry) dbr:Pythagorean_distance dbr:Pythagorean_metric dbr:Geometric_distance
is dbp:caption of dbr:Voronoi_diagram
is foaf:primaryTopic of wikipedia-en:Euclidean_distance