Quadratic equation (original) (raw)

About DBpedia

Στα μαθηματικά, δευτεροβάθμια εξίσωση ονομάζεται κάθε δευτέρου βαθμού. Μερικές φορές αναφέρεται και ως τετραγωνική εξίσωση. Η γενική μορφή μιας δευτεροβάθμιας εξίσωσης είναι: όπου τα γράμματα α, β και γ παριστάνουν σταθερούς αριθμούς, με Οι σταθερές α, β και γ ονομάζονται συντελεστές, με το α να είναι ο συντελεστής του x2, το β να είναι ο συντελεστής του x και γ ο σταθερός όρος. Οι συντελεστές μπορεί να είναι πραγματικοί ή μιγαδικοί αριθμοί.

thumbnail

Property Value
dbo:abstract Una equació de segon grau, anomenada també equació quadràtica, és una equació polinòmica on el grau més alt dels diversos monomis que la integren és 2. La seva expressió general és: on a ≠ 0. Les equacions de segon grau es resolen mitjançant la fórmula: , que proporciona les dues solucions complexes que té, d'acord amb el teorema fonamental de l'àlgebra. Per comprovar si aquestes solucions són també reals, es pot fer observant el discriminant de l'equació, que correspon al terme dins l'arrel quadrada: . Si: * Les dues solucions són reals. * L'equació té una sola solució real (doble), que ve donada per . * No existeixen solucions en els reals. (ca) في الرياضيات وبالتحديد في الجبر الابتدائي، المعادلة التربيعية (بالإنجليزية: Quadratic equation)‏ هي معادلة جبرية أحادية المتغير من الدرجة الثانية، تكتب وفق الصيغة العامة حيث يمثل المجهول أو المتغير أما ، ، فيطلق عليها الثوابت أو المعاملات. يطلق على المعامل الرئيسي وعلى الحد الثابت . ويشترط أن يكون . أما إذا كان عندها تصبح المعادلة معادلة خطية لأن عنصر ال لم يعد موجوداً. يتم إيجاد حلول (أو جذور) المعادلة التربيعية باستعمال عدة طرق: باستعمال الصيغة التربيعية أو طريقة إكمال المربع أو طريقة حساب المميز أو طريقة الرسم البياني.تُسمى قيم المجهول x التي تحقق المعدالة حلا للمعادلة (أو حلحلةً لها)، أو جذورا لها أو أصفارا لها. للمعادلة التربيعية جذران على الأكثر. إذا وجد للمعادلة التربيعية جذرا واحدا فقط، فإنه يُقال عنه أنه جذر مزدوج. (ar) Jako kvadratická rovnice se v matematice označuje algebraická rovnice druhého stupně, tzn. rovnice o jedné neznámé, ve které neznámá vystupuje ve druhé mocnině (x²). V základním tvaru vypadá následovně: Zde jsou a, b, c nějaká čísla (obvykle reálná čísla, pro komplexní čísla vizte níže), tzv. koeficienty této rovnice, x je neznámá (obvykle se předpokládá reálná nebo komplexní). Koeficient a je vždy různý od nuly, neboť pro a = 0 se jedná o lineární rovnici. Často se kvadratická rovnice vyjadřuje v základním (normovaném) tvaru, kde a = 1. Do tohoto tvaru lze převést každou kvadratickou rovnici jejím vydělením koeficientem a. Jednotlivé mají také svá pojmenování: ax2 je kvadratický člen, bx je lineární člen a c absolutní člen. (cs) Στα μαθηματικά, δευτεροβάθμια εξίσωση ονομάζεται κάθε δευτέρου βαθμού. Μερικές φορές αναφέρεται και ως τετραγωνική εξίσωση. Η γενική μορφή μιας δευτεροβάθμιας εξίσωσης είναι: όπου τα γράμματα α, β και γ παριστάνουν σταθερούς αριθμούς, με Οι σταθερές α, β και γ ονομάζονται συντελεστές, με το α να είναι ο συντελεστής του x2, το β να είναι ο συντελεστής του x και γ ο σταθερός όρος. Οι συντελεστές μπορεί να είναι πραγματικοί ή μιγαδικοί αριθμοί. (el) Eine quadratische Gleichung ist eine Gleichung, die sich in der Form mit schreiben lässt. Hierbei sind Koeffizienten; ist die Unbekannte.Ist zusätzlich , spricht man von einer reinquadratischen Gleichung. Ihre Lösungen lassen sich anhand der Formel bestimmen. Im Bereich der reellen Zahlen kann die quadratische Gleichung keine, eine oder zwei Lösungen besitzen. Ist der Ausdruck unter der Wurzel negativ, so existiert keine Lösung; ist er Null, so existiert eine Lösung; wenn er positiv ist, so existieren zwei Lösungen. Die linke Seite dieser Gleichung ist der Term einer quadratischen Funktion (allgemeiner ausgedrückt: ein Polynom zweiten Grades), ; der Funktionsgraph dieser Funktion im kartesischen Koordinatensystem ist eine Parabel. Geometrisch beschreibt die quadratische Gleichung die Nullstellen dieser Parabel. (de) Una ecuación de segundo grado​​ o ecuación cuadrática de una variable es aquella que tiene la expresión general: donde es la variable, y , y constantes; es el coeficiente cuadrático (distinto de cero), el coeficiente lineal y es el término independiente. Este polinomio se puede interpretar mediante la gráfica de una función cuadrática, es decir, por una parábola. Esta representación gráfica es útil, porque las abscisas de las intersecciones o punto de tangencia de esta gráfica, en el caso de existir, con el eje son las raíces reales de la ecuación. Si la parábola no corta el eje las raíces son números complejos. El primer caso (raíces reales) corresponde a un discriminante positivo, y el segundo (raíces complejas) a uno negativo. (es) Matematikan, aldagai bakarreko bigarren mailako ekuazioa edo ekuazio koadratikoa , era osoan, honela adierazten den aldagai bakarreko ekuazio polinomiko bat da: Ekuazioa ebaztean, ezezaguna den x aldagaiaren balioa zehaztea da helburua, hau da, ekuazioaren erroak edo soluzioak ateratzea, a, b eta c zenbakizko konstanteak izanik. Konstante hauei koefiziente deritze. Definizioz, bigarren mailako ekuazioan a ≠ 0 bete behar da, bestela lehenengo mailako ekuazio bat izango bailitzateke. a=1 betetzen denean, x2+bx+c=0 ekuazioetan alegia, ekuazio koadratikoa monikoa dela esaten da . Bigarren mailako ekuazio osatugabeak ere badaude , baina agertzen ez diren koefizienteak 0 bihurtuz aise aldatzen dira adierazpen orokorrera: Bigarren mailako ekuazioek aplikazio zabalak dituzte zientzian, hala-nola fisikan, azeleraziozko mugimenduen aztertzeko . (eu) San ailgéabar, is éard is cothromóid chearnach ann (ón Laidin quadratus 'cearnóg') ná aon chothromóid is féidir a atheagrú i bhfoirm chaighdeánach mar áit a seasann x d'uimhreacha anaithnid, agus a, b, agus c d'uimhreacha aitheanta, áit a seasann a ≠ 0 . Má tá a = 0, ansin tá an chothromóid líneach, ní cearnach, mar níl aon téarma ann. Is iad na huimhreacha a, b, agus c comhéifeachtaí na cothromóide agus is féidir iad a idirdhealú ach an chomhéifeacht chearnach, an chomhéifeacht líneach agus an téarma tairiseach nó saor a ghlaoch orthu, faoi seach. (ga) Persamaan kuadrat adalah suatu persamaanberorde dua. Bentuk umum dari persamaan kuadrat adalah dengan cara Huruf-huruf a, b dan c disebut sebagai koefisien: koefisien kuadrat a adalah koefisien dari , koefisien linier b adalah koefisien dari x, dan c adalah koefisien konstan atau disebut juga suku bebas. (in) In algebra, a quadratic equation (from Latin quadratus 'square') is any equation that can be rearranged in standard form as where x represents an unknown value, and a, b, and c represent known numbers. One supposes generally that a ≠ 0; those equations with a = 0 are considered degenerate because the equation then becomes linear or even simpler. The numbers a, b, and c are the coefficients of the equation and may be distinguished by calling them, respectively, the quadratic coefficient, the linear coefficient and the constant or free term. The values of x that satisfy the equation are called solutions of the equation, and roots or zeros of the expression on its left-hand side. A quadratic equation has at most two solutions. If there is only one solution, one says that it is a double root. If all the coefficients are real numbers, there are either two real solutions, or a single real double root, or two complex solutions that are complex conjugates of each other. A quadratic equation always has two roots, if complex roots are included; and a double root is counted for two. A quadratic equation can be factored into an equivalent equation where r and s are the solutions for x. The quadratic formula expresses the solutions in terms of a, b, and c. Completing the square is one of several ways for getting it. Solutions to problems that can be expressed in terms of quadratic equations were known as early as 2000 BC. Because the quadratic equation involves only one unknown, it is called "univariate". The quadratic equation contains only powers of x that are non-negative integers, and therefore it is a polynomial equation. In particular, it is a second-degree polynomial equation, since the greatest power is two. (en) 二次方程式(にじほうていしき、英: quadratic equation)とは、数学において、二次の多項式関数の零点集合を表す条件のことである。 その零点集合については、特に実数係数であるものについて、幾何学的考察が歴史的に行われ、よく知られている(二元二次方程式については円錐曲線を、一般の多変数二次方程式については二次曲面を参照するとよい)。 以下では、未知数が1個の場合を中心に取り扱う。二次方程式は次数が 2 の代数方程式のことであり、一般に未知数を x として の形で表される。二次方程式を解くには、二次方程式の解の公式が知られている他、平方完成を利用する方法、因数分解を利用する方法などがよく知られている。 一元二次方程式を解くことと同値である問題に対する解法は、紀元前20世紀ごろには既に知られていた。 (ja) En mathématiques, une équation du second degré, ou équation quadratique, est une équation polynomiale de degré 2, c'est-à-dire qu'elle peut s'écrire sous la forme : Dans cette équation, x est l'inconnue les lettres a, b et c représentent les coefficients, avec a différent de 0. a est le coefficient quadratique, b est le coefficient linéaire, et c est un terme constant. Dans l'ensemble des nombres réels, une telle équation admet au maximum deux solutions, qui correspondent aux abscisses des éventuels points d'intersection de la parabole d'équation y = ax2 + bx + c avec l'axe des abscisses dans le plan muni d'un repère cartésien. La position de cette parabole par rapport à l'axe des abscisses, et donc le nombre de solutions (0, 1 ou 2) est donnée par le signe du discriminant. Ce dernier permet également d'exprimer facilement les solutions, qui sont aussi les racines de la fonction du second degré associée. Sur le corps des nombres complexes, une équation du second degré a toujours exactement deux racines distinctes ou une racine double. Dans l'algèbre des quaternions, une équation du second degré peut avoir une infinité de solutions. (fr) In matematica, un'equazione di secondo grado o quadratica ad un'incognita è un'equazione algebrica in cui il grado massimo con cui compare l'incognita è 2, ed è sempre riconducibile alla forma: , dove sono numeri reali o complessi. Per il teorema fondamentale dell'algebra, le soluzioni (dette anche radici o zeri dell'equazione) delle equazioni di secondo grado nel campo complesso sono sempre due, se contate con la loro molteplicità. Nel campo reale invece le equazioni quadratiche possono ammettere due soluzioni, una soluzione doppia, oppure nessuna soluzione. Sono poi particolarmente semplici da risolvere le cosiddette equazioni incomplete, dove alcuni coefficienti sono uguali a zero. Il grafico della funzione nel piano cartesiano è una parabola, la cui concavità dipende dal segno di . Più precisamente: se la parabola ha la concavità rivolta verso l'alto, se la parabola ha la concavità rivolta verso il basso. (it) 이차방정식(二次方程式, 영어: quadratic equation)은 최고차항의 차수가 2인 다항 방정식이다. 에 관한 이차 방정식의 일반적인 형태는 와 같고, 여기서 는 변수, 와 는 각각 의 계수라고 하며, 는 상수항이라고 부른다. 일반적으로 인수분해를 이용해 풀이한다. 여기에서 에서 a의 값이 -이면 아래로 내려가고 +이면 위로 올라간다. 그리고 |a
dbo:thumbnail wiki-commons:Special:FilePath/Quadratic_equation_coefficients.png?width=300
dbo:wikiPageExternalLink http://quadraticformulacalculator.org https://web.archive.org/web/20071022022143/http:/plus.maths.org/issue30/features/quadratic/index-gifd.html https://web.archive.org/web/20071022022143/https:/web.archive.org/web/20220000000000*/http:/quadraticformulacalculator.org https://web.archive.org/web/20071110232247/http:/plus.maths.org/issue29/features/quadratic/index-gifd.html http://plus.maths.org/issue29/features/quadratic/index-gifd.html http://plus.maths.org/issue30/features/quadratic/index-gifd.html
dbo:wikiPageID 25175 (xsd:integer)
dbo:wikiPageLength 50960 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1124384755 (xsd:integer)
dbo:wikiPageWikiLink dbr:Pythagoras dbr:Quadratic_formula dbr:Quadratic_function dbr:Quartic_equation dbr:Quartic_function dbr:Bakhshali_Manuscript dbr:Monic_polynomial dbr:Step_response dbr:Brahmagupta dbr:Descartes'_theorem dbr:Algorithm dbc:Equations dbr:Regular_polygon dbr:René_Descartes dbr:Unit_(ring_theory) dbr:Vieta's_formulas dbr:Degeneracy_(mathematics) dbr:Degree_of_a_polynomial dbr:Indeterminate_equation dbr:Lill's_method dbr:Galois_field dbr:Yang_Hui dbr:'Abd_al-Hamīd_ibn_Turk dbr:Complex_number dbr:Conic_sections dbr:Coordinates dbr:Critical_point_(mathematics) dbr:Mathematics_in_medieval_Islam dbr:Quadratic_residue dbr:Circle dbr:Ellipse dbr:Equation dbr:Fundamental_theorem_of_algebra dbr:Gerolamo_Cardano dbr:Golden_ratio dbr:Greek_mathematics dbr:Muhammad_ibn_Musa_al-Khwarizmi dbr:Muller's_method dbr:Cosine dbr:The_Nine_Chapters_on_the_Mathematical_Art dbr:Third_Dynasty_of_Ur dbr:Thomas_Carlyle dbr:La_Géométrie dbr:Prosthaphaeresis dbr:Sridhara dbr:Arithmetica dbr:Berlin_Papyrus_6619 dbr:Linear_equation dbr:Simon_Stevin dbr:Sine dbr:Clay_tablet dbr:Completing_the_square dbr:Complex_conjugate dbr:Delta_(letter) dbr:François_Viète dbr:Chinese_mathematics dbr:Mathematical_table dbr:Numerical_stability dbr:Tangent dbr:Babylonian_mathematics dbc:Elementary_algebra dbr:Dissection_problem dbr:Domain_of_a_function dbr:Coefficients dbr:Irrational_number dbr:Irreducible_polynomial dbr:File:Graphical_calculation_of_root_of_quadratic_equation.png dbr:Abraham_bar_Hiyya dbr:Algebra dbr:Cube_root dbr:Cubic_function dbr:Euclid dbr:Excircle dbr:Exponentiation dbr:Factorization dbr:Field_(mathematics) dbr:First_Babylonian_dynasty dbr:Nth_root dbr:Numerical_analysis dbr:Parabola dbr:Celestial_mechanics dbr:Graph_of_a_function dbr:Mathematical_proof dbr:Radius dbr:Hyperbola dbr:Univariate dbr:Characteristic_(algebra) dbr:Bicentric_quadrilateral dbr:Bisection dbr:Coefficient dbr:Zero_of_a_function dbr:Diophantus dbr:Discriminant dbr:Artin–Schreier_theory dbr:Plus–minus_sign dbr:Splitting_field dbr:Square_(algebra) dbr:Square_number dbr:Square_root dbr:Circumscribed_circle dbr:Imaginary_unit dbr:Indeterminate_form dbr:Indian_mathematics dbr:Inflection_point dbr:Middle_Kingdom_of_Egypt dbr:Nested_radical dbr:Carlyle_circle dbr:Catastrophic_cancellation dbr:Rational_number dbr:Real_number dbr:Real_numbers dbr:Order_of_magnitude dbr:Root_of_a_function dbr:Unknown_(mathematics) dbr:Vertex_(curve) dbr:Expression_(mathematics) dbr:Leading_coefficient dbr:Loss_of_significance dbr:Programming_language dbr:Solving_quadratic_equations_with_continued_fractions dbr:Quadratic_irrational dbr:Round-off_error dbr:Multiple_root dbr:Ex-tangential_quadrilateral dbr:Polynomial_expansion dbr:Trigonometric_substitution dbr:Solution_(mathematics) dbr:Ruler-and-compass_construction dbr:Inscribed_circle dbr:Floating_point_number dbr:Fuss'_theorem dbr:Cross_multiplication dbr:Double_root dbr:Polynomial_equation dbr:Quintic_equation dbr:Abū_Kāmil_Shujā_ibn_Aslam dbr:Extension_field dbr:Horizontal_axis dbr:X-axis dbr:File:LillsQuadratic.svg dbr:File:Quadratic_eq_discriminant.svg dbr:File:Visual.complex.root.finding.png dbr:Liu_Yi_(mathematician) dbr:File:CarlyleCircle.svg dbr:File:Excel_quadratic_error.PNG dbr:File:Polynomialdeg2.svg dbr:File:Quadratic_equation_coefficients.png dbr:File:La_Jolla_Cove_cliff_diving_-_02.jpg
dbp:date 2007-10-22 (xsd:date) 2007-11-10 (xsd:date) October 2017 (en) September 2021 (en)
dbp:id p/q076050 (en)
dbp:postText : this is linear, not quadratic (en)
dbp:reason without indication on the numerical accuracy, the figure and its discussion are nonsensical. At least the difference with the exact value of the root must also appear. (en)
dbp:title Quadratic equation (en) Quadratic equations (en)
dbp:url https://web.archive.org/web/20071022022143/http:/plus.maths.org/issue30/features/quadratic/index-gifd.html https://web.archive.org/web/20071022022143/https:/web.archive.org/web/20220000000000*/http:/quadraticformulacalculator.org https://web.archive.org/web/20071110232247/http:/plus.maths.org/issue29/features/quadratic/index-gifd.html
dbp:urlname QuadraticEquation (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:! dbt:= dbt:About dbt:Authority_control dbt:Clarify dbt:Commons_category dbt:Main dbt:Math dbt:MathWorld dbt:Mvar dbt:Original_research_inline dbt:Radic dbt:Reflist dbt:Rp dbt:Short_description dbt:Webarchive dbt:Wikt-lang dbt:Quadratic_equation_graph_key_points.svg dbt:Quadratic_function_graph_complex_roots.svg dbt:Etymology dbt:Polynomials
dct:subject dbc:Equations dbc:Elementary_algebra
rdf:type owl:Thing
rdfs:comment Στα μαθηματικά, δευτεροβάθμια εξίσωση ονομάζεται κάθε δευτέρου βαθμού. Μερικές φορές αναφέρεται και ως τετραγωνική εξίσωση. Η γενική μορφή μιας δευτεροβάθμιας εξίσωσης είναι: όπου τα γράμματα α, β και γ παριστάνουν σταθερούς αριθμούς, με Οι σταθερές α, β και γ ονομάζονται συντελεστές, με το α να είναι ο συντελεστής του x2, το β να είναι ο συντελεστής του x και γ ο σταθερός όρος. Οι συντελεστές μπορεί να είναι πραγματικοί ή μιγαδικοί αριθμοί. (el) Una ecuación de segundo grado​​ o ecuación cuadrática de una variable es aquella que tiene la expresión general: donde es la variable, y , y constantes; es el coeficiente cuadrático (distinto de cero), el coeficiente lineal y es el término independiente. Este polinomio se puede interpretar mediante la gráfica de una función cuadrática, es decir, por una parábola. Esta representación gráfica es útil, porque las abscisas de las intersecciones o punto de tangencia de esta gráfica, en el caso de existir, con el eje son las raíces reales de la ecuación. Si la parábola no corta el eje las raíces son números complejos. El primer caso (raíces reales) corresponde a un discriminante positivo, y el segundo (raíces complejas) a uno negativo. (es) San ailgéabar, is éard is cothromóid chearnach ann (ón Laidin quadratus 'cearnóg') ná aon chothromóid is féidir a atheagrú i bhfoirm chaighdeánach mar áit a seasann x d'uimhreacha anaithnid, agus a, b, agus c d'uimhreacha aitheanta, áit a seasann a ≠ 0 . Má tá a = 0, ansin tá an chothromóid líneach, ní cearnach, mar níl aon téarma ann. Is iad na huimhreacha a, b, agus c comhéifeachtaí na cothromóide agus is féidir iad a idirdhealú ach an chomhéifeacht chearnach, an chomhéifeacht líneach agus an téarma tairiseach nó saor a ghlaoch orthu, faoi seach. (ga) Persamaan kuadrat adalah suatu persamaanberorde dua. Bentuk umum dari persamaan kuadrat adalah dengan cara Huruf-huruf a, b dan c disebut sebagai koefisien: koefisien kuadrat a adalah koefisien dari , koefisien linier b adalah koefisien dari x, dan c adalah koefisien konstan atau disebut juga suku bebas. (in) 二次方程式(にじほうていしき、英: quadratic equation)とは、数学において、二次の多項式関数の零点集合を表す条件のことである。 その零点集合については、特に実数係数であるものについて、幾何学的考察が歴史的に行われ、よく知られている(二元二次方程式については円錐曲線を、一般の多変数二次方程式については二次曲面を参照するとよい)。 以下では、未知数が1個の場合を中心に取り扱う。二次方程式は次数が 2 の代数方程式のことであり、一般に未知数を x として の形で表される。二次方程式を解くには、二次方程式の解の公式が知られている他、平方完成を利用する方法、因数分解を利用する方法などがよく知られている。 一元二次方程式を解くことと同値である問題に対する解法は、紀元前20世紀ごろには既に知られていた。 (ja) 이차방정식(二次方程式, 영어: quadratic equation)은 최고차항의 차수가 2인 다항 방정식이다. 에 관한 이차 방정식의 일반적인 형태는 와 같고, 여기서 는 변수, 와 는 각각 의 계수라고 하며, 는 상수항이라고 부른다. 일반적으로 인수분해를 이용해 풀이한다. 여기에서 에서 a의 값이 -이면 아래로 내려가고 +이면 위로 올라간다. 그리고 |a
rdfs:label معادلة تربيعية (ar) Equació de segon grau (ca) Kvadratická rovnice (cs) Quadratische Gleichung (de) Δευτεροβάθμια εξίσωση (el) Ecuación de segundo grado (es) Bigarren mailako ekuazio (eu) Cothromóid chearnach (ga) Persamaan kuadrat (in) Équation du second degré (fr) Equazione di secondo grado (it) 이차 방정식 (ko) 二次方程式 (ja) Vierkantsvergelijking (nl) Równanie kwadratowe (pl) Quadratic equation (en) Equação quadrática (pt) Квадратное уравнение (ru) 一元二次方程 (zh) Квадратне рівняння (uk) Andragradsekvation (sv)
owl:sameAs freebase:Quadratic equation wikidata:Quadratic equation dbpedia-af:Quadratic equation dbpedia-als:Quadratic equation dbpedia-ar:Quadratic equation http://ast.dbpedia.org/resource/Ecuación_de_segundu_grau dbpedia-az:Quadratic equation http://azb.dbpedia.org/resource/ایکینجی_درجه‌ده_موعادیله‌لر http://ba.dbpedia.org/resource/Квадрат_тигеҙләмә dbpedia-be:Quadratic equation dbpedia-bg:Quadratic equation http://bn.dbpedia.org/resource/দ্বিঘাত_সমীকরণ http://bs.dbpedia.org/resource/Kvadratna_jednačina dbpedia-ca:Quadratic equation http://ckb.dbpedia.org/resource/ھاوکێشەی_دووجا dbpedia-cs:Quadratic equation http://cv.dbpedia.org/resource/Тăваткалла_танлăх dbpedia-cy:Quadratic equation dbpedia-da:Quadratic equation dbpedia-de:Quadratic equation dbpedia-el:Quadratic equation dbpedia-es:Quadratic equation dbpedia-et:Quadratic equation dbpedia-eu:Quadratic equation dbpedia-fa:Quadratic equation dbpedia-fi:Quadratic equation http://fo.dbpedia.org/resource/Polynom_á_øðrum_stigi dbpedia-fr:Quadratic equation dbpedia-ga:Quadratic equation dbpedia-gl:Quadratic equation dbpedia-he:Quadratic equation http://hi.dbpedia.org/resource/द्विघात_समीकरण dbpedia-hr:Quadratic equation dbpedia-hsb:Quadratic equation dbpedia-hu:Quadratic equation http://hy.dbpedia.org/resource/Քառակուսային_հավասարում dbpedia-id:Quadratic equation dbpedia-io:Quadratic equation dbpedia-is:Quadratic equation dbpedia-it:Quadratic equation dbpedia-ja:Quadratic equation dbpedia-ka:Quadratic equation dbpedia-kk:Quadratic equation dbpedia-ko:Quadratic equation dbpedia-la:Quadratic equation dbpedia-lmo:Quadratic equation http://lt.dbpedia.org/resource/Kvadratinė_lygtis http://lv.dbpedia.org/resource/Kvadrātvienādojums dbpedia-mk:Quadratic equation http://ml.dbpedia.org/resource/ദ്വിമാനസമവാക്യം dbpedia-ms:Quadratic equation dbpedia-nl:Quadratic equation dbpedia-nn:Quadratic equation dbpedia-no:Quadratic equation dbpedia-oc:Quadratic equation http://pa.dbpedia.org/resource/ਦੋ_ਘਾਤੀ_ਸਮੀਕਰਨ dbpedia-pl:Quadratic equation dbpedia-pt:Quadratic equation dbpedia-ro:Quadratic equation dbpedia-ru:Quadratic equation dbpedia-sh:Quadratic equation dbpedia-simple:Quadratic equation dbpedia-sk:Quadratic equation dbpedia-sl:Quadratic equation dbpedia-sq:Quadratic equation dbpedia-sr:Quadratic equation dbpedia-sv:Quadratic equation http://ta.dbpedia.org/resource/இருபடிச்_சமன்பாடு http://tg.dbpedia.org/resource/Муодилаи_квадратӣ dbpedia-th:Quadratic equation dbpedia-tr:Quadratic equation dbpedia-uk:Quadratic equation http://ur.dbpedia.org/resource/دو_درجی_مساوات http://uz.dbpedia.org/resource/Kvadrat_tenglama dbpedia-vi:Quadratic equation http://yi.dbpedia.org/resource/קוואדראטישע_גלייכונג dbpedia-zh:Quadratic equation https://global.dbpedia.org/id/3pFRd
prov:wasDerivedFrom wikipedia-en:Quadratic_equation?oldid=1124384755&ns=0
foaf:depiction wiki-commons:Special:FilePath/CarlyleCircle.svg wiki-commons:Special:FilePath/Excel_quadratic_error.png wiki-commons:Special:FilePath/Graphical_calculation_of_root_of_quadratic_equation.png wiki-commons:Special:FilePath/La_Jolla_Cove_cliff_diving_-_02.jpg wiki-commons:Special:FilePath/LillsQuadratic.svg wiki-commons:Special:FilePath/Quadratic_eq_discriminant.svg wiki-commons:Special:FilePath/Quadratic_equation_coefficients.png wiki-commons:Special:FilePath/Visual.complex.root.finding.png wiki-commons:Special:FilePath/Polynomialdeg2.svg
foaf:isPrimaryTopicOf wikipedia-en:Quadratic_equation
is dbo:knownFor of dbr:Abraham_bar_Hiyya
is dbo:wikiPageDisambiguates of dbr:QE
is dbo:wikiPageRedirects of dbr:Quadratic_Equation dbr:ABC_formula dbr:Solving_quadratic_equations dbr:Factoring_a_quadratic_expression dbr:Ax^2 bx c dbr:Ax^2 bx c dbr:Ax2+bx+c dbr:Ax2+bx+c=0 dbr:Ax2_+_bx_+_c dbr:Ax²_+_bx_+_c dbr:Bhaskaracharya's_Formula dbr:Bhaskarachārya's_Formula dbr:Quadform dbr:Quadratic_Factoring_Formula dbr:Quadratic_equations dbr:Quadratic_model dbr:Quadratic_solution_formula dbr:The_Quadratic_Equation dbr:Second-degree_equation dbr:Second_degree_equation
is dbo:wikiPageWikiLink of dbr:Quadratic_Equation dbr:Quadratic_formula dbr:Quadratic_function dbr:Quadratic_irrational_number dbr:Quadratics dbr:Quadric dbr:Quartic_equation dbr:Quartic_function dbr:Root_of_unity dbr:English_numerals dbr:Beryl_May_Dent dbr:Beta dbr:Bhāskara_II dbr:Boussinesq_approximation_(water_waves) dbr:Brahmagupta dbr:Decimal_separator dbr:Descartes'_theorem dbr:Algebraic_equation dbr:List_of_Indian_inventions_and_discoveries dbr:List_of_mathematical_jargon dbr:List_of_people_considered_father_or_mother_of_a_scientific_field dbr:Penilaian_Menengah_Rendah dbr:Perfect_digital_invariant dbr:Relativistic_wave_equations dbr:Response_modeling_methodology dbr:Uzbek_Wikipedia dbr:Intersection_(geometry) dbr:Problem_of_Apollonius dbr:Plimpton_322 dbr:Limiting_point_(geometry) dbr:List_of_important_publications_in_mathematics dbr:List_of_inventions_in_the_medieval_Islamic_world dbr:List_of_mathematical_proofs dbr:Yang_Hui dbr:Timeline_of_Indian_history dbr:Timeline_of_Indian_innovation dbr:Timeline_of_algebra dbr:Timeline_of_numerals_and_arithmetic dbr:Quadratic dbr:Common_integrals_in_quantum_field_theory dbr:Conic_section dbr:Constructible_polygon dbr:Continued_fraction dbr:Analytic_geometry dbr:Ancient_Egyptian_mathematics dbr:Matrix_representation_of_conic_sections dbr:Ray_transfer_matrix_analysis dbr:Pure_spinor dbr:Quadrisecant dbr:Timeline_of_algorithms dbr:Timeline_of_mathematics dbr:1796_in_science dbr:Eigenvalues_and_eigenvectors dbr:Elementary_algebra dbr:Equation dbr:Equation_solving dbr:Galois_theory dbr:Generalized_continued_fraction dbr:Glossary_of_calculus dbr:Golden_ratio dbr:Muhammad_ibn_Musa_al-Khwarizmi dbr:Muller's_method dbr:Multiset dbr:Conjugate_(square_roots) dbr:Conjugate_depth dbr:The_Story_of_Maths dbr:Sridhara dbr:Arithmetica dbr:Simon_Stevin dbr:Simplex dbr:Closed-form_expression dbr:Completing_the_square dbr:Computational_human_phantom dbr:Delta_(letter) dbr:Idempotent_matrix dbr:Khinchin's_constant dbr:Kummer_theory dbr:Pentagon dbr:Population dbr:Precalculus dbr:Major-General's_Song dbr:Three-address_code dbr:Mathematics_education dbr:Mathematics_education_in_New_York dbr:Mathematics_education_in_the_United_States dbr:Mathematics_in_the_medieval_Islamic_world dbr:Matrix_differential_equation dbr:Michael_Stifel dbr:BKL_singularity dbr:Babylonian_mathematics dbr:Butterworth_filter dbr:Additional_Mathematics dbr:Cauchy–Schwarz_inequality dbr:Timeline_of_ancient_Greek_mathematicians dbr:Timeline_of_scientific_discoveries dbr:Two-body_problem_in_general_relativity dbr:HP-22S dbr:Irrational_number dbr:65537-gon dbr:Abraham_bar_Hiyya dbr:Algebra dbr:257-gon dbr:Cubic_equation dbr:Dual_number dbr:Factorization dbr:Fibonacci_number dbr:Balanced_flow dbr:PH dbr:Pairing_function dbr:Parabola dbr:Florimond_de_Beaune dbr:Goldbeter–Koshland_kinetics dbr:History_of_Hindu_Mathematics dbr:History_of_algebra dbr:History_of_mathematical_notation dbr:History_of_mathematics dbr:Islamic_inheritance_jurisprudence dbr:Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm dbr:List_of_Egyptian_inventions_and_discoveries dbr:List_of_equations dbr:Parametric_family dbr:Quadratic_form dbr:QE dbr:Quadratic_reciprocity dbr:RICE_chart dbr:ABC_formula dbr:Group_(mathematics) dbr:Heegner_number dbr:J-invariant dbr:Tangent_half-angle_formula dbr:TeX dbr:The_Compendious_Book_on_Calculation_by_Completion_and_Balancing dbr:Hyperbola dbr:Jigu_Suanjing dbr:Aryabhata dbr:Abu_Kamil dbr:Abu_Sahl_al-Quhi dbr:Acid_strength dbr:Charlie_Hughes dbr:Law_of_cosines dbr:Bicentric_quadrilateral dbr:Black–Scholes_model dbr:Economic_order_quantity dbr:Ray_tracing_(graphics) dbr:Toy_program dbr:Diophantine_equation dbr:Diophantus dbr:Autocatalysis dbr:Marilyn_vos_Savant dbr:Mars_cycler dbr:Marvin_the_Paranoid_Android dbr:Bézier_curve dbr:Plus–minus_sign dbr:Po-Shen_Loh dbr:Polynomial dbr:Solving_quadratic_equations dbr:Song_dynasty dbr:Square_(algebra) dbr:Square_root dbr:Field_trace dbr:Grünbaum–Rigby_configuration dbr:Factoring_a_quadratic_expression dbr:Imaginary_unit dbr:Indian_mathematics dbr:Indian_people dbr:Mersenne_prime dbr:Brāhmasphuṭasiddhānta dbr:Negative_number dbr:Nested_radical dbr:Operations_research dbr:Ax^2 bx c dbr:Carlyle_circle dbr:Catalan_number dbr:Quintic_function dbr:RLC_circuit dbr:Real_number dbr:Chakravala_method dbr:Change_of_variables dbr:Magic_number_(programming) dbr:Variable_(mathematics) dbr:Explicit_and_implicit_methods dbr:List_of_types_of_numbers dbr:Numeric_precision_in_Microsoft_Excel dbr:Solving_quadratic_equations_with_continued_fractions dbr:Ex-tangential_quadrilateral dbr:Science_in_the_medieval_Islamic_world dbr:Śrīpati dbr:Solution_in_radicals dbr:Nomogram dbr:Phase_plane dbr:Periodic_points_of_complex_quadratic_mappings dbr:Schwarzschild_geodesics dbr:Track_transition_curve dbr:Sharp_EL-500W_series dbr:Outline_of_algebra dbr:Outline_of_discrete_mathematics dbr:Wang_Xiaotong dbr:Why_Beauty_Is_Truth dbr:Ax^2 bx c dbr:Ax2+bx+c dbr:Ax2+bx+c=0 dbr:Ax2_+_bx_+_c dbr:Ax²_+_bx_+_c dbr:Bhaskaracharya's_Formula dbr:Bhaskarachārya's_Formula dbr:Quadform dbr:Quadratic_Factoring_Formula dbr:Quadratic_equations dbr:Quadratic_model dbr:Quadratic_solution_formula dbr:The_Quadratic_Equation dbr:Second-degree_equation dbr:Second_degree_equation
is dbp:knownFor of dbr:Abraham_bar_Hiyya
is rdfs:seeAlso of dbr:Discriminant
is owl:differentFrom of dbr:Quadratic_formula
is foaf:primaryTopic of wikipedia-en:Quadratic_equation