Cartesian product (original) (raw)

About DBpedia

الجداء الديكارتي أو الضرب الديكارتي (بالإنجليزية: Cartesian Product)‏ هو اسم يطلق في الرياضيات لمجموعتين X وY، ويرمز له ب X × Y، على مجموعة الأزواج المرتبة التي ينتمي عنصرها الأول إلى المجموعة X وينتمي عنصرها الثاني إلى المجموعة Y. سمي كذلك نسبة إلى رينيه ديكارت الذي قام بتأسيس الهندسة التحليلية مطلقا هذا المفهوم من جداء المجموعات.يطلق عليه أيضا في بعض الدول العربية ومنها مصر حاصل الضرب الديكارتي.

thumbnail

Property Value
dbo:abstract En teoria de conjunts, el producte cartesià és un producte directe de conjunts. En particular, el producte cartesià de dos conjunts X i Y, expressat com X × Y, és el conjunt de tots els parells ordenats en els quals els primer component pertany a X i el segon a Y. El producte cartesià rep el seu nom de René Descartes, qui va donar origen a aquest concepte al formular la geometria analítica. Així, per exemple, el producte cartesià del conjunt dels tretze elements de la baralla anglesa {As, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} amb el conjunt dels quatre pals {♠, ♥, ♦, ♣} és el conjunt de les 52 cartes de la baralla {(As, ♠), (K, ♠), ..., (2, ♠), (As, ♥), ..., (3, ♣), (2, ♣)}. Si els conjunts involucrats són conjunts finits, la cardinalitat (o nombre d'elements) del producte cartesià és el producte de les cardinalitats dels conjunts involucrats: En l'exemple anterior, el nombre d'elements del producte era 52 = 13⋅4. (ca) الجداء الديكارتي أو الضرب الديكارتي (بالإنجليزية: Cartesian Product)‏ هو اسم يطلق في الرياضيات لمجموعتين X وY، ويرمز له ب X × Y، على مجموعة الأزواج المرتبة التي ينتمي عنصرها الأول إلى المجموعة X وينتمي عنصرها الثاني إلى المجموعة Y. سمي كذلك نسبة إلى رينيه ديكارت الذي قام بتأسيس الهندسة التحليلية مطلقا هذا المفهوم من جداء المجموعات.يطلق عليه أيضا في بعض الدول العربية ومنها مصر حاصل الضرب الديكارتي. (ar) V matematice je kartézský součin (někdy též direktní součin) množinová operace, přičemž kartézským součinem dvou množin a je množina, označená , která obsahuje všechny uspořádané dvojice, ve kterých je první položka prvkem množiny a druhá položka je prvkem množiny . Kartézský součin obsahuje všechny takové kombinace těchto prvků. Například kartézským součinem osmiprvkové množiny A = { sedma, osma, devítka, desítka, spodek, svršek, král, eso } se čtyřprvkovou množinou B = { srdce, listy, kule, žaludy } je 32prvková množina A × B = { (sedma, srdce), (sedma, listy), (sedma, kule), (sedma, žaludy), (osma, srdce), …, (eso, kule), (eso, žaludy) }. Kartézský součin je pojmenován po francouzském matematikovi René Descartovi, z jehož formulací analytické geometrie je tento koncept odvozen. (cs) Das kartesische Produkt oder Mengenprodukt ist in der Mengenlehre eine grundlegende Konstruktion, aus gegebenen Mengen eine neue Menge zu erzeugen. Gelegentlich wird für das kartesische Produkt auch die mehrdeutige Bezeichnung „Kreuzprodukt“ verwendet. Das kartesische Produkt zweier Mengen ist die Menge aller geordneten Paare von Elementen der beiden Mengen, wobei die erste Komponente ein Element der ersten Menge und die zweite Komponente ein Element der zweiten Menge ist. Allgemeiner besteht das kartesische Produkt mehrerer Mengen aus der Menge aller Tupel von Elementen der Mengen, wobei die Reihenfolge der Mengen und damit der entsprechenden Elemente fest vorgegeben ist. Die Ergebnismenge des kartesischen Produkts wird auch Produktmenge, Kreuzmenge oder Verbindungsmenge genannt. Das kartesische Produkt ist nach dem französischen Mathematiker René Descartes benannt, der es zur Beschreibung des kartesischen Koordinatensystems verwendete und damit die analytische Geometrie begründete. (de) Στα μαθηματικά, το Καρτεσιανό γινόμενο είναι μια μαθηματική πράξη, η οποία επιστρέφει ένα σύνολο (ή γινόμενο συνόλων ή απλά γινόμενο) από διάφορα σύνολα. Δηλαδή, για τα σύνολα A και B, το Καρτεσιανό γινόμενο A × B είναι το σύνολο όλων των διατεταγμένων ζεύγων (α,β) όπου α ∈ A και β ∈ B. Τα γινόμενα αυτά μπορούν να καθοριστούν, χρησιμοποιώντας , π.χ.: A × B = { (α,β) | α ∈ A και β ∈ B }. Θα μπορούσε να δημιουργηθεί ένας πίνακας από τη λήψη του Καρτεσιανού γινομένου ενός συνόλου γραμμών και ενός συνόλου στηλών. Όταν ληφθεί το Καρτεσιανό γινόμενο γραμμές × στήλες, τα κελιά του παραχθέντος πίνακα θα περιέχουν διατεταγμένα ζεύγη της μορφής (αριθμός γραμμής, αριθμός στήλης). Γενικότερα, το Καρτεσιανό γινόμενο ν συνόλων, γνωστό και ως ν-οστό Καρτεσιανό γινόμενο, μπορεί να εκπροσωπείται από έναν πίνακα ν διαστάσεων, όπου κάθε στοιχείο του είναι μια ν-άδα. Ένα διατεταγμένο ζεύγος είναι μια 2-άδα ή απλά ένα ζεύγος. Το Καρτεσιανό γινόμενο ονομάστηκε από τον Ρενέ Ντεκάρτ, του οποίου η διατύπωση της αναλυτικής γεωμετρίας οδήγησε σε μια έννοια που γενικεύεται περαιτέρω με τον όρο άμεσο γινόμενο. (el) Kartezia produto de aroj kaj estas aro da ĉiuj ordaj duopoj tiel, ke estas el , kaj estas el . Tiun aron oni signas per simbolo . Nomo kartezia produto devenas de nomo Kartezio, franca filozofo kaj matematikisto, kiu enkondukis ĉi tiun difinon en . (eo) In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. In terms of set-builder notation, that is A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. (en) Matematikan, biderkadura kartesiarra bi multzoen artean egin daitekeen eragiketa bati deritzo, non hau burutzean bikote ordenatuez osaturiko multzo berri bat sortuko den. Izan bitez beraz, A eta B bi multzo, A × B izango da (a,b) bikote ordenatu guztiekin osaturiko multzoa non a∈A eta b∈B. Multzo berriaren kardinalari dagokionez, hau da, multzo berriaren elementu kopuruari dagokionez, * A =n bada eta B
dbo:thumbnail wiki-commons:Special:FilePath/Cartesian_Product_qtl1.svg?width=300
dbo:wikiPageExternalLink http://www.apronus.com/provenmath/cartesian.htm http://education-portal.com/academy/lesson/how-to-find-the-cartesian-product.html
dbo:wikiPageID 24104095 (xsd:integer)
dbo:wikiPageLength 20274 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1124218294 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cartesian_coordinate_system dbr:Cartesian_plane dbc:Axiom_of_choice dbr:Power_set dbr:Product_topology dbr:Binary_relation dbc:Operations_on_sets dbr:Relation_(mathematics) dbr:René_Descartes dbr:Universe_(mathematics) dbr:Index_set dbr:Infinite_set dbr:Commutative dbr:Concatenation dbr:Coordinates dbr:Cross_product dbr:Analytic_geometry dbr:Mathematics dbr:Empty_function dbr:Function_(mathematics) dbr:Coproduct dbr:Empty_product dbr:Empty_set dbr:Ordered_pair dbr:Axiom_schema_of_specification dbr:Total_order dbr:Tuple dbr:Disjoint_sets dbr:Join_(SQL) dbr:Absolute_complement dbr:Euclidean_space dbr:Euclidean_vector dbr:Finitary_relation dbr:Cardinality dbr:Direct_product dbr:Graph_theory dbr:Isomorphism dbr:Product_(category_theory) dbr:Projection_(mathematics) dbr:Intersection_(set_theory) dbr:Tensor_product_of_graphs dbr:Standard_52-card_deck dbr:Bijection dbr:Codomain dbr:ZFC dbr:Direct_product_of_groups dbr:Axiom_of_choice dbr:Axiom_of_pairing dbr:Axiom_of_power_set dbr:Axiom_of_union dbr:Plane_(mathematics) dbr:Playing_cards dbr:Indexed_family dbr:Infinity dbr:Natural_numbers dbr:Associative dbr:Cartesian_closed_category dbr:Cartesian_product_of_graphs dbr:Category_theory dbr:Real_number dbr:Real_numbers dbr:Set_(mathematics) dbr:Set_theory dbr:Union_(set_theory) dbr:Vertex_(graph_theory) dbr:Exponential_object dbr:Product_type dbr:Ultraproduct dbr:Set-builder_notation dbr:Subset dbr:Ordered_pairs dbr:Right_adjoint dbr:Cartesian_square_(category_theory) dbr:Fiber_product dbr:Final_object dbr:Singleton_set dbr:Cardinal_exponentiation dbr:File:Cartesian-coordinate-system.svg dbr:File:Cartesian_Product_qtl1.svg dbr:File:Piatnikcards.jpg
dbp:align center (en)
dbp:caption = ∩ . (en) A × = \ (en) A × = ∩ , (en) A × = ∪ , and (en) Example sets (en) and = {x ∈ ℝ : 4 ≤ x ≤ 7}, demonstrating (en)  = {x ∈ ℝ : 2 ≤ x ≤ 5},  = {x ∈ ℝ : 3 ≤ x ≤ 7}, (en)  = {y ∈ ℝ : 1 ≤ y ≤ 3},  = {y ∈ ℝ : 2 ≤ y ≤ 4}, demonstrating (en) ≠ ∪ can be seen from the same example. (en)  = {y ∈ ℝ : 1 ≤ y ≤ 4},  = {x ∈ ℝ : 2 ≤ x ≤ 5}, (en)
dbp:id p/d032730 (en)
dbp:image CartDistr_svg.svg (en) CartInts_svg.svg (en) CartUnion_svg.svg (en)
dbp:title Direct product (en)
dbp:totalWidth 750 (xsd:integer)
dbp:wikiPageUsesTemplate dbt:Springer dbt:Hair_space dbt:Set_theory dbt:Cn dbt:Color dbt:Hsp dbt:Main_article dbt:Multiple_image dbt:Redirect dbt:Reflist dbt:See_also dbt:Short_description dbt:Use_mdy_dates dbt:Highlight dbt:Mathematical_logic
dct:subject dbc:Axiom_of_choice dbc:Operations_on_sets
rdf:type owl:Thing yago:WikicatWorksByRenéDescartes yago:Artifact100021939 yago:Creation103129123 yago:EndProduct103287178 yago:Object100002684 yago:Oeuvre103841417 yago:PhysicalEntity100001930 yago:Product104007894 yago:Whole100003553
rdfs:comment الجداء الديكارتي أو الضرب الديكارتي (بالإنجليزية: Cartesian Product)‏ هو اسم يطلق في الرياضيات لمجموعتين X وY، ويرمز له ب X × Y، على مجموعة الأزواج المرتبة التي ينتمي عنصرها الأول إلى المجموعة X وينتمي عنصرها الثاني إلى المجموعة Y. سمي كذلك نسبة إلى رينيه ديكارت الذي قام بتأسيس الهندسة التحليلية مطلقا هذا المفهوم من جداء المجموعات.يطلق عليه أيضا في بعض الدول العربية ومنها مصر حاصل الضرب الديكارتي. (ar) Kartezia produto de aroj kaj estas aro da ĉiuj ordaj duopoj tiel, ke estas el , kaj estas el . Tiun aron oni signas per simbolo . Nomo kartezia produto devenas de nomo Kartezio, franca filozofo kaj matematikisto, kiu enkondukis ĉi tiun difinon en . (eo) Matematikan, biderkadura kartesiarra bi multzoen artean egin daitekeen eragiketa bati deritzo, non hau burutzean bikote ordenatuez osaturiko multzo berri bat sortuko den. Izan bitez beraz, A eta B bi multzo, A × B izango da (a,b) bikote ordenatu guztiekin osaturiko multzoa non a∈A eta b∈B. Multzo berriaren kardinalari dagokionez, hau da, multzo berriaren elementu kopuruari dagokionez, * |A =n bada eta B =m, orduan
rdfs:label جداء ديكارتي (ar) Producte cartesià (ca) Kartézský součin (cs) Kartesisches Produkt (de) Καρτεσιανό γινόμενο (el) Kartezia produto (eo) Producto cartesiano (es) Cartesian product (en) Biderketa kartesiar (eu) Iolrach Cairtéiseach (ga) Produk Cartesius (in) Produit cartésien (fr) Prodotto cartesiano (it) 直積集合 (ja) 곱집합 (ko) Cartesisch product (nl) Iloczyn kartezjański (pl) Produto cartesiano (pt) Cartesisk produkt (sv) Прямое произведение (ru) Декартів добуток множин (uk) 笛卡儿积 (zh)
rdfs:seeAlso dbr:Cardinal_arithmetic dbr:Relations dbr:List_of_set_identities
owl:sameAs freebase:Cartesian product dbpedia-ru:Cartesian product yago-res:Cartesian product wikidata:Cartesian product http://am.dbpedia.org/resource/ርቢ_ስብስብ dbpedia-ar:Cartesian product dbpedia-be:Cartesian product dbpedia-bg:Cartesian product dbpedia-ca:Cartesian product http://ckb.dbpedia.org/resource/لێکدانی_دێکارتی dbpedia-cs:Cartesian product dbpedia-da:Cartesian product dbpedia-de:Cartesian product dbpedia-el:Cartesian product dbpedia-eo:Cartesian product dbpedia-es:Cartesian product dbpedia-et:Cartesian product dbpedia-eu:Cartesian product dbpedia-fa:Cartesian product dbpedia-fi:Cartesian product dbpedia-fr:Cartesian product dbpedia-ga:Cartesian product dbpedia-gd:Cartesian product dbpedia-gl:Cartesian product dbpedia-he:Cartesian product http://hi.dbpedia.org/resource/कार्तीय_गुणन dbpedia-hr:Cartesian product dbpedia-hu:Cartesian product http://ia.dbpedia.org/resource/Producto_cartesian dbpedia-id:Cartesian product dbpedia-is:Cartesian product dbpedia-it:Cartesian product dbpedia-ja:Cartesian product dbpedia-ka:Cartesian product dbpedia-ko:Cartesian product dbpedia-lmo:Cartesian product http://lt.dbpedia.org/resource/Dekarto_sandauga http://lv.dbpedia.org/resource/Dekarta_reizinājums dbpedia-mk:Cartesian product dbpedia-ms:Cartesian product dbpedia-nl:Cartesian product dbpedia-nn:Cartesian product dbpedia-no:Cartesian product dbpedia-oc:Cartesian product dbpedia-pl:Cartesian product dbpedia-pms:Cartesian product dbpedia-pt:Cartesian product dbpedia-ro:Cartesian product dbpedia-sh:Cartesian product dbpedia-simple:Cartesian product dbpedia-sk:Cartesian product dbpedia-sl:Cartesian product dbpedia-sr:Cartesian product dbpedia-sv:Cartesian product http://ta.dbpedia.org/resource/கார்ட்டீசியன்_பெருக்கற்பலன் dbpedia-th:Cartesian product http://tl.dbpedia.org/resource/Produktong_Cartesian dbpedia-tr:Cartesian product dbpedia-uk:Cartesian product dbpedia-vi:Cartesian product dbpedia-zh:Cartesian product https://global.dbpedia.org/id/hT9z
prov:wasDerivedFrom wikipedia-en:Cartesian_product?oldid=1124218294&ns=0
foaf:depiction wiki-commons:Special:FilePath/Piatnikcards.jpg wiki-commons:Special:FilePath/Cartesian-coordinate-system.svg wiki-commons:Special:FilePath/CartDistr_svg.svg wiki-commons:Special:FilePath/CartInts_svg.svg wiki-commons:Special:FilePath/CartUnion_svg.svg wiki-commons:Special:FilePath/Cartesian_Product_qtl1.svg
foaf:isPrimaryTopicOf wikipedia-en:Cartesian_product
is dbo:wikiPageDisambiguates of dbr:Cartesian dbr:Product
is dbo:wikiPageRedirects of dbr:Cylinder_(algebra) dbr:Cartesian_Product dbr:Cartesian_product_algorithm dbr:Graphing_the_total_product dbr:Graphing_total_product dbr:Z_notation_cartesian_product dbr:CartesianProduct dbr:Cartesian_Products dbr:Cartesian_power dbr:Cartesian_products dbr:Cartesian_square dbr:Product_of_sets dbr:Product_set
is dbo:wikiPageWikiLink of dbr:Cartesian_coordinate_system dbr:Prewellordering dbr:Prism_(geometry) dbr:Product_order dbr:Product_topology dbr:Projective_plane dbr:Schläfli_symbol dbr:Schwartz_space dbr:Element_(category_theory) dbr:Elementary_mathematics dbr:Enriched_category dbr:Enumeration_algorithm dbr:Enumerative_combinatorics dbr:Module_(mathematics) dbr:Monoid_(category_theory) dbr:Lévy_hierarchy dbr:Montel_space dbr:SQLf dbr:Principal_homogeneous_space dbr:Product_category dbr:Product_measure dbr:Product_metric dbr:Binary_relation dbr:Braid_group dbr:Dependent_type dbr:Algebraic_K-theory dbr:Algebraic_operation dbr:Algebraic_theory dbr:History_of_the_function_concept dbr:Homotopy_groups_of_spheres dbr:List_of_mathematical_symbols_by_subject dbr:List_of_regular_polytopes_and_compounds dbr:List_of_set_identities_and_relations dbr:Relational_algebra dbr:René_Descartes dbr:Rng_(algebra) dbr:Currying dbr:Cylinder_set dbr:Dagger_compact_category dbr:Ultrafilter_(set_theory) dbr:Uniform_4-polytope dbr:Universe_(mathematics) dbr:Vector_space dbr:Von_Neumann–Bernays–Gödel_set_theory dbr:Degree_of_a_field_extension dbr:Dehn_twist dbr:Duocylinder dbr:Index_of_philosophy_articles_(A–C) dbr:Infinite_set dbr:Integer_lattice dbr:Intersection_non-emptiness_problem dbr:Intuitionistic_type_theory dbr:Kuwahara_filter dbr:Universal_algebra dbr:Levenshtein_automaton dbr:Lexicographic_product_of_graphs dbr:Light's_associativity_test dbr:List_of_mathematical_logic_topics dbr:List_of_set_theory_topics dbr:Set_inversion dbr:Nowhere_commutative_semigroup dbr:Spherinder dbr:Post's_lattice dbr:Proprism dbr:Solid_Klein_bottle dbr:String_diagram dbr:Uniform_6-polytope dbr:Well-defined_expression dbr:Compact-open_topology dbr:Complex_polytope dbr:Constant_function dbr:Convex_series dbr:Countable_set dbr:Cross_product dbr:Analytic_set dbr:Analytical_mechanics dbr:Anderson–Kadec_theorem dbr:Generalized_complex_structure dbr:Order_theory dbr:Signed-digit_representation dbr:Solid_torus dbr:Quasitransitive_relation dbr:Zero_element dbr:Timeline_of_bordism dbr:Clifford_torus dbr:Closed_graph_theorem_(functional_analysis) dbr:Elliptic_curve dbr:Epigraph_(mathematics) dbr:Frobenius_theorem_(differential_topology) dbr:Fréchet_space dbr:Function_(mathematics) dbr:Function_composition dbr:Function_of_several_complex_variables dbr:Georg_Cantor dbr:Glossary_of_group_theory dbr:Glossary_of_mathematical_symbols dbr:Glossary_of_ring_theory dbr:Graph_product dbr:Box_topology dbr:Monoid dbr:Multiple_integral dbr:Multiplication_(music) dbr:Multiplication_sign dbr:Mutually_orthogonal_Latin_squares dbr:Möbius_strip dbr:Naive_set_theory dbr:Constructive_set_theory dbr:Coproduct dbr:Copula_(probability_theory) dbr:Equinumerosity dbr:Equivalent_definitions_of_mathematical_structures dbr:Operad dbr:Ordinal_arithmetic dbr:Arity dbr:Bernoulli_scheme dbr:Lexicographic_order dbr:Limit_(category_theory) dbr:Sierpiński_carpet dbr:Simply_typed_lambda_calculus dbr:Closed_monoidal_category dbr:Combinatorial_class dbr:Combinatorial_proof dbr:Compact_semigroup dbr:Compactly_generated_space dbr:Complex_coordinate_space dbr:Complex_multiplication_of_abelian_varieties dbr:Complex_torus dbr:Dense_set dbr:Empty_product dbr:Empty_set dbr:Feferman–Vaught_theorem dbr:Functional_database_model dbr:Functional_decomposition dbr:Hajós's_theorem dbr:Helly_space dbr:Hopf_algebra dbr:Horizontal_line_test dbr:Idempotent_relation dbr:Kraft–McMillan_inequality dbr:Ordered_pair dbr:Pairing dbr:Partition_of_unity dbr:Plane_(geometry) dbr:Symmetric_product_of_an_algebraic_curve dbr:Mapping_torus dbr:Microbundle dbr:Balanced_set dbr:Banach–Alaoglu_theorem dbr:Banach–Mazur_theorem dbr:6-cube dbr:6-polytope dbr:Adelic_algebraic_group dbr:Adjoint_functors dbr:Category_of_sets dbr:Cauchy's_integral_formula dbr:Cayley–Dickson_construction dbr:Three-dimensional_space dbr:Topological_vector_space dbr:Torus dbr:Total_order dbr:Transitive_closure dbr:Tree_(descriptive_set_theory) dbr:Tuple dbr:Well-founded_relation dbr:Wirth–Weber_precedence_relationship dbr:GPS_signals dbr:Cross_product_(disambiguation) dbr:Heegaard_splitting dbr:Isaac_Namioka dbr:Join_(SQL) dbr:Jónsson–Tarski_algebra dbr:K-cell_(mathematics) dbr:Lebesgue_measure dbr:Linear_algebraic_group dbr:Linear_continuum dbr:Lojban_grammar dbr:Multicategory dbr:Orbifold_notation dbr:5 dbr:5-polytope dbr:Affine_arithmetic dbr:Affine_connection dbr:Algebraic_data_type dbr:3-3_duoprism dbr:3-4_duoprism dbr:3-torus dbr:4-polytope dbr:Curvilinear_coordinates dbr:Cyclic_order dbr:Cylinder_(algebra) dbr:Data_type dbr:Duality_(mathematics) dbr:Duoprism dbr:Exponentiation dbr:Exterior_algebra dbr:Factor_system dbr:Fantom_(programming_language) dbr:Fastest dbr:Filters_in_topology dbr:Finitary_relation dbr:Finite_set dbr:Four-dimensional_space dbr:Banach_bundle dbr:Base_(topology) dbr:Partially_ordered_set dbr:Cardinal_number dbr:Cayley_graph dbr:Cartesian dbr:Cartesian_Product dbr:Cartesian_product_algorithm dbr:Diagonal dbr:Diagonal_morphism dbr:Diagonal_subgroup dbr:Diffeology dbr:Differential_invariant dbr:Direct_product dbr:Direct_sum dbr:Direct_sum_of_groups dbr:Direct_sum_of_modules dbr:Dirichlet_problem dbr:Glossary_of_differential_geometry_and_topology dbr:Glossary_of_order_theory dbr:Glossary_of_topology dbr:Goodman-Nguyen-Van_Fraassen_algebra dbr:Graph_operations dbr:Hanner_polytope dbr:History_monoid dbr:Isoperimetric_dimension dbr:Kakutani_fixed-point_theorem dbr:Lehmer_code dbr:T-duality dbr:Predicate_functor_logic dbr:Product dbr:Product_(category_theory) dbr:Product_(mathematics) dbr:Product_of_rings dbr:Production_(computer_science) dbr:Projection_(mathematics) dbr:Projection_(set_theory) dbr:Projective_Hilbert_space dbr:Record_(computer_science) dbr:Relation_algebra dbr:Relational_database dbr:Relational_model dbr:Restriction_(mathematics) dbr:Ring_(mathematics) dbr:Ternary_relation dbr:Zappa–Szép_product dbr:Group_action dbr:Group_structure_and_the_axiom_of_choice dbr:Gérard_Debreu dbr:Gödel_metric dbr:Hilbert_space dbr:Interval_(mathematics) dbr:Baire_space_(set_theory) dbr:Cotangent_bundle dbr:Tensor_product dbr:Tensor_product_of_graphs dbr:Tesseract dbr:Hypercube dbr:Hyperfinite_equivalence_relation dbr:Hyperparameter_optimization dbr:Hyperrectangle dbr:Pentagonal_prism dbr:Sample_space dbr:Abstract_Wiener_space dbr:Abuse_of_notation dbr:Kernel_(set_theory) dbr:Binary_function dbr:Binary_operation dbr:Biproduct dbr:Surjective_function dbr:Symbolic_method_(combinatorics) dbr:SystemVerilog dbr:TLA+ dbr:Coarse_structure dbr:Cobordism dbr:Hexagonal_prism dbr:Higher_category_theory dbr:Holonomy dbr:Homotopy dbr:Tensor_(intrinsic_definition) dbr:Modular_product_of_graphs dbr:Uniform_5-polytope dbr:Uniform_polytope dbr:Szemerédi–Trotter_theorem dbr:Direct_product_of_groups dbr:Disintegration_theorem dbr:Disjoint_union dbr:Axiom_of_choice dbr:Axiom_of_finite_choice dbr:Axiom_of_power_set dbr:Manifold dbr:Burnside_ring dbr:C-symmetry dbr:CW_complex dbr:Pi-system dbr:Poisson_point_process dbr:Squared_triangular_number dbr:Classification_Tree_Method
is foaf:primaryTopic of wikipedia-en:Cartesian_product