Multiplicative inverse (original) (raw)
في الرياضيات، مقلوب عدد أو معكوس ضربي (بالإنجليزية: Reciprocal أو Multiplicative inverse) هو العدد الذي إذا ضُرب بالعدد الأصلي يعطي القيمة 1، العنصر المحايد بالنسبة إلى عملية الضرب. يرمز لمقلوب العدد x بالرمز 1x أو x −1. مقلوب العدد هو . على سبيل المثال، مقلوب 5 هو 1/5.
Property | Value |
---|---|
dbo:abstract | في الرياضيات، مقلوب عدد أو معكوس ضربي (بالإنجليزية: Reciprocal أو Multiplicative inverse) هو العدد الذي إذا ضُرب بالعدد الأصلي يعطي القيمة 1، العنصر المحايد بالنسبة إلى عملية الضرب. يرمز لمقلوب العدد x بالرمز 1x أو x −1. مقلوب العدد هو . على سبيل المثال، مقلوب 5 هو 1/5. (ar) En matemàtiques, l'invers multiplicatiu, recíproc o simplement invers d'un nombre x, expressat com ¹⁄x o x −1, és un nombre que multiplicat per x dona com a resultat 1. L'invers d'una fracció a⁄b és b⁄a. L'invers d'un nombre real consisteix a dividir 1 entre el nombre en qüestió. Per exemple, el recíproc de 5 és un cinquè (¹⁄₅ o 0,2), i el recíproc de 0,25 és 4 (1 dividit per 0,25). (ca) V matematice se jako převrácená (neboli reciproká) hodnota čísla x označuje to číslo, které po vynásobení číslem x dává jako výsledek 1. Převrácená hodnota čísla x se označuje jako nebo . Platí tedy, že . Nula je jediné číslo, které nemá převrácenou hodnotu v racionálním, reálném ani komplexním oboru. (Komplexní čísla však lze rozšířit o tzv. komplexní nekonečno, které je v takto rozšířeném oboru jednoznačným převráceným číslem k nule.) Všechna ostatní čísla z těchto oborů ji mají, přičemž převrácená hodnota racionálního čísla je racionální číslo, převrácená hodnota reálného čísla je reálné číslo (ale převrácená hodnota celého čísla není číslo celé (s výjimkou ±1), ale číslo racionální). Převrácenou hodnotu komplexního čísla v algebraickém tvaru lze vyjádřit jako , v goniometrickém tvaru V abstraktní algebře je převrácená hodnota označována jako inverzní prvek vzhledem k násobení, jedná se o speciální případ inverzního prvku. (cs) Στα μαθηματικά, ο πολλαπλασιαστικός αντίστροφος ενός αριθμού , συμβολίζεται με ή , και είναι ένας αριθμός που όταν πολλαπλασιαστεί επί δίνει αποτέλεσμα το ουδέτερο στοιχείο του πολλαπλασιασμού, δηλαδή τη μονάδα, : . Ο πολλαπλασιαστικός αντίστροφος είναι μία ειδική περίπτωση του αντιστρόφου στοιχείου ενός συνόλου ως προς μία δυαδική πράξη . Σε έναν δακτύλιο (όπου υπάρχουν δύο πράξεις), ο πολλαπλασιαστικός αντίστροφος ενός στοιχείου αναφέρεται στον αντίστροφο ως προς την πράξη , ενώ ο αναφέρεται στον αντίστροφο ως προς την πράξη . (el) La inverso de nombro estas la rezulto de la divido de 1 per la nombro. Ekzemple: La inverso de du estas duono. En pli ĝenerala senco, la nocio inverso ankaŭ estas uzata en jenaj ekzemplaj frazoj: * La inverso de multiplikado estas dividado. * La inverso de derivaĵo estas malderivaĵo. * La inverso de funkcio estas ĝia (se ĝi ekzistas). * La inverso de pluvolvi la vidbendon estas retrovolvi ĝin. * La inversa elemento de a rilate al operacio • estas elemento a-1 tia ke a • a-1 = a-1 • a = e kie e estas la neŭtrala elemento. (eo) Der Kehrwert (auch der reziproke Wert oder das Reziproke) einer von verschiedenen Zahl ist in der Arithmetik diejenige Zahl, die mit multipliziert die Zahl ergibt; er wird als oder notiert. (de) Matematikan, x zenbaki baten alderantzizko zenbakia 1⁄x edo x −1 adierazitako beste zenbaki bat da, zeina bider x eginez gero 1 ematen duen. 0 zenbakiak ez du alderantzizko zenbakirik. Edozein zenbaki konplexuaren alderantzizko zenbakia zenbaki konplexua ere da. Edozein zenbaki errealen alderantzizko zenbakia zenbaki erreala ere da eta edozein zenbaki arrazionalena arrazionala ere. (eu) En matemáticas, el inverso multiplicativo, recíproco o inverso de un número x no nulo, es el número, denotado como 1⁄x o x −1, que multiplicado por x da 1 como resultado. En los números reales el 0 no tiene inverso multiplicativo. El inverso de un número real también es real, el inverso de un número racional es racional y todo número complejo tiene un inverso que es un número complejo.La división es la operación inversa de la multiplicación, si por definición se cumple que: , y además . Es decir: * Si tenemos y/x su inverso multiplicativo es x/y; o bien * Si tenemos x su inverso multiplicativo es 1/x . La propiedad que todo elemento no nulo tiene un inverso multiplicativo es parte de la definición de cuerpo. (es) En mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x−1 ou 1/x. Par exemple, dans , l'inverse de 3 est , puisque . (fr) In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1). The term reciprocal was in common use at least as far back as the third edition of Encyclopædia Britannica (1797) to describe two numbers whose product is 1; geometrical quantities in inverse proportion are described as reciprocall in a 1570 translation of Euclid's Elements. In the phrase multiplicative inverse, the qualifier multiplicative is often omitted and then tacitly understood (in contrast to the additive inverse). Multiplicative inverses can be defined over many mathematical domains as well as numbers. In these cases it can happen that ab ≠ ba; then "inverse" typically implies that an element is both a left and right inverse. The notation f −1 is sometimes also used for the inverse function of the function f, which is for most functions not equal to the multiplicative inverse. For example, the multiplicative inverse 1/(sin x) = (sin x)−1 is the cosecant of x, and not the inverse sine of x denoted by sin−1 x or arcsin x. The terminology difference reciprocal versus inverse is not sufficient to make this distinction, since many authors prefer the opposite naming convention, probably for historical reasons (for example in French, the inverse function is preferably called the bijection réciproque). (en) Dalam matematika, invers perkalian atau timbal balik untuk bilangan x, dilambangkan dengan 1/x atau x−1, adalah bilangan yang ketika dikalikan dengan x menghasilkan , 1. Pembalikan perkalian dari sebuah pecahan a/b adalah b/a. Untuk pembalikan perkalian bilangan real, bagilah 1 dengan bilangan tersebut. Misalnya, kebalikan dari 5 adalah seperlima (1/5 atau 0,2), dan kebalikan dari 0,25 adalah 1 dibagi 0,25, atau 4. Fungsi invers, fungsi f(x) dengan peta x untuk 1/x, adalah salah satu contoh paling sederhana dari suatu fungsi yang merupakan kebalikannya sendiri (sebuah ). Mengalikan sebuah bilangan sama dengan membagi kebalikannya dan sebaliknya. Misalnya, perkalian dengan 4/5 (atau 0,8) akan memberikan hasil yang sama seperti pembagian dengan 5/4 (atau 1,25). Oleh karena itu, perkalian dengan bilangan diikuti dengan perkalian kebalikannya menghasilkan bilangan asli (karena perkaliannya adalah 1). Istilah inverse umum digunakan setidaknya sejauh edisi ketiga Encyclopædia Britannica (1797) untuk menggambarkan dua angka yang hasil kalinya 1; kuantitas geometris dalam proporsi terbalik dijelaskan sebagai inverse dalam terjemahan tahun 1570 dari Elemen Euklides. Dalam frase invers perkalian, kualifikasi perkalian sering dihilangkan dan kemudian dipahami secara diam-diam (berbeda dengan Invers aditif). Pembalikan perkalian dapat didefinisikan di banyak domain matematika serta angka. Dalam kasus ini bisa terjadi itu ab ≠ ba; kemudian "inverse" biasanya menyiratkan bahwa suatu elemen adalah kiri dan kanan invers. Notasi f −1 terkadang juga digunakan untuk fungsi invers dari fungsi f, yang secara umum tidak sama dengan invers perkalian. Misalnya, invers perkalian 1/(sin x) = (sin x)−1 adalah dari x, dan bukan denoted by sin−1 x or arcsin x. Hanya untuk yang terkait erat (lihat di bawah). Perbedaan terminologi timbal balik versus invers tidak cukup untuk membuat perbedaan ini, karena banyak penulis lebih menyukai konvensi penamaan yang berlawanan, mungkin karena alasan historis (misalnya dalam Prancis, fungsi invers lebih disukai disebut Bijection réciproque (in) Het omgekeerde (ook: de omgekeerde) of de reciproque (vaak geschreven als 'reciproke') van een getal of grootheid is 1 gedeeld door dat getal of die grootheid. De omgekeerde van een breuk ontstaat door teller en noemer te verwisselen. * Het omgekeerde van 7 is 1/7 en het omgekeerde van 2/3 is 3/2. * Het product van twee getallen die elkaars omgekeerde zijn, is gelijk aan 1. In een verbale beschrijving ontstaat het omgekeerde door de woorden 'delen door' in 'delen op' te vervangen. In de breuk 2/3 wordt 2 gedeeld door 3 (of 3 gedeeld op 2). En voor 3/2 is dat: 2 wordt gedeeld op 3 (of 3 wordt gedeeld door 2). Enkele SI-eenheden zijn het omgekeerde van andere eenheden: * de hertz is de omgekeerde van de seconde: 1 Hz = 1/s = s−1 * de dioptrie is de omgekeerde van de meter: 1 dpt = 1/m = m−1 * de siemens is de omgekeerde van de ohm: 1 S = 1/Ω = Ω−1 Het omgekeerde moet niet worden verward met het tegengestelde of met een inverse bewerking. De inverse bewerking van de sinus is de arcsinus maar dit wordt soms genoteerd als sin−1. In de abstracte algebra is het omgekeerde het inverse element voor een bewerking die (vaak) met een vermenigvuldigingsteken genoteerd wordt, bijvoorbeeld de tweede bewerking van een ring of een lichaam.In de rekenkunde is aftrekken de inverse bewerking van optellen. (nl) 수학에서, 어떤 수의 곱셈 역원(-逆元, 영어: multiplicative inverse) 또는 역수(逆數, 영어: reciprocal)는 그 수와 곱하면 곱셈 항등원(1)이 되는 수를 말한다. 두 수의 곱이 1이 될 때, 한 수를 다른 수의 역수라고 한다. 의 곱셈 역원은 와 같이 표기하거나 와 같이 쓸 수 있다. 곱하여 1이 되는 두 수를 '서로 곱셈 역원'이라 하기도 하는데, 이는 곱셈 역원 관계가 대칭 관계이기 때문에 가능한 표현이다. 즉, 만약 가 의 곱셈 역원이라면, 역시 의 곱셈 역원이다. 예를 들어, 유리수 의 곱셈 역원은 이다. 실수 의 곱셈 역원은 이며, 복소수 의 곱셈 역원은 이다. 보다 일반적으로, 유리수 의 곱셈 역원은 항상 이며, 복소수 의 곱셈 역원은 항상 이다. 0이 아닌 복소수의 곱셈 역원은 항상 존재하며, 또한 항상 유일하다. 그러나 0은 곱셈 역원을 가질 수 없는데, 이는 0에 아무런 수를 곱하여도 0이 되기 때문이다. 각 실수를 그 곱셈 역원으로 대응시키는 함수 는 의 예이다. 이러한 이름은 변숫값과 함숫값이 반비례 관계를 이룬다는 데에서 왔다. 곱셈 역원의 개념은 모든 모노이드에서 다룰 수 있다. 이 경우 교환 법칙이 성립한다는 보장이 없으므로 곱셈 역원은 두 가지 순서로 곱하였을 때 모두 곱셈 항등원인 두 원소의 관계로 정의된다. 단지 왼쪽 또는 오른쪽에 곱하였을 때 곱셈 항등원이 된다고 요구할 경우 왼쪽 역원과 오른쪽 역원의 개념을 얻는다.모든 원소가 곱셈 역원을 갖는 모노이드를 군이라고 한다. 곱셈 역원의 개념은 환에서도 다뤄지며, 이 경우 곱셈 역원을 갖는 원소는 가역원이라고 불린다. 이들 가역원은 가역원군이라는 군을 이룬다. 환의 가역원이 유일한 역원을 가질 필요충분조건은 모든 0이 아닌 원소가 가역원을 갖는 경우를 나눗셈환이라고 하며, 여기에 곱셈 교환 법칙을 추가하면 가장 익숙한 체의 정의가 완성된다. (ko) In matematica, con reciproco di un numero si indica il numero che moltiplicato per dia come risultato 1; e può essere indicato come (frazione unitaria) o anche . Generalmente quando si fa riferimento ai reciproci, si intendono soltanto i reciproci dei numeri interi: , ma in realtà è utilizzato anche per indicare il reciproco di un numero decimale, ad esempio il reciproco di è (it) 逆数(ぎゃくすう、英: reciprocal)とは、ある数に掛け算した結果が 1 となる数である。すなわち、数 x の逆数 y とは次のような関係を満たす。 通常、x の逆数は分数の記法を用いて 1/x のように表されるか、冪の記法を用いて x−1 のように表される。 1 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、英: multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、x と y の役割を入れ替えれば、x は y の逆数であると言える。従って、x の逆数が y であるとき y の逆数は x である。 x が 0 である場合、任意の数との積は 0 になるため、(0 ≠ 1 であれば)0 に対する逆数は存在しない。 また、任意の x について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は x = y = 1 以外には存在しない。0 を除く任意の数 x について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。 (ja) Liczba odwrotna do danej liczby to taka liczba że Jest to zgodne z ogólną definicją elementu odwrotnego mnożenia w algebrze, zapisywanego zwykle jako lub W liczbach rzeczywistych jest on określany przez funkcję homograficzną W arytmetyce modularnej również można określić element odwrotny modulo jeśli i są względnie pierwsze. Element taki można uzyskać korzystając z rozszerzonego algorytmu Euklidesa dla i Pozwala to określić działanie dzielenia w dla pierwszych (i częściowo dla innych ) jako mnożenie przez odwrotność. (pl) Ett reciprokt tal, reciprokt värde, reciprok funktion är en matematisk benämning för den multiplikativa inversen av ett tal x eller funktion f(x), det vill säga det tal x-1 = 1/x sådant att x⋅x-1 = 1, eller den funktion f(x)-1 = 1/f(x) sådan att f(x)⋅ f(x)-1 = 1. Observera att f(x) -1 = 1/f(x) ej ska förväxlas med f -1(x) som är den inversa funktionen sådan att f(x) = y och f -1(y) = x. Ofta används "invers" (med "multiplikativ" utelämnat) felaktigt för, speciellt, inverterade funktioner (invers motsvarar engelskans inverse som i inverse function, inverterad motsvarar engelskans reciprocal , och speciellt används invertible på engelska för att ange att en funktion har en invers, inte att den är inverterbar) vilket kan leda till missförstånd om man säger "invers", men menar "inverterad funktion" (i fallet faktiska värden finns det inte lika mycket att missförstå, men jämför additiv invers). Att man inverterar ett bråk innebär att man byter plats på täljare och nämnare. (sv) Em matemática, o inverso multiplicativo de um número x é o número y que, multiplicado por x, gera a identidade multiplicativa. Note-se que estamos falando de qualquer operação binária que tenha o nome de multiplicação, que não precisa ser comutativa, mas deve ter elemento neutro. No caso de uma operação não comutativa, o inverso deve ser tal que . Quando este inverso é único (por exemplo, o inverso multiplicativo de um número real), ele é representado por: ou ou O termo "recíproco" era de uso comum pelo menos até a terceira edição de "Encyclopædia Britannica" (1797) para descrever dois números cujo produto é 1; As quantidades geométricas em proporção inversa são descritas como reciprocall em uma tradução 1570 de Euclid . (pt) 數學上,一个数的倒数(英語:reciprocal),是指一個与相乘的积为1的数,记为或。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 一个非零的复数(实数)的倒数定义为使得成立的复数(实数),记作例如,的倒数是,因为 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆,或者在环中,元素3和18也沒有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为。 (zh) Обра́тное число́ (обратное значение, обратная величина) к данному числу x — это число, умножение которого на x даёт единицу. Принятая запись: или . Два числа, произведение которых равно 1, называются взаимно обратными. Примеры. Единственные вещественные числа, совпадающие со своими обратными: и Обратное для числа 2 равно Обратное для числа равно Обратное для числа равно Обратное число не следует путать с противоположным или с обратной функцией. Понятие обратного элемента можно определить не только для чисел, но и для других математических объектов. (ru) Обернене число для x, позначається 1/x або x−1, це число, добуток якого з x породжує одиницю. Оберненим дробу a/b буде b/a. Для отримання оберненого для дійсного числа треба розділити 1 на число. Наприклад, обернене для 5 є 1/5, а для 0.25 це 1 розділений на 0.25, або 4. Функція f(x), яка відображає x в 1/x, це один з найпростіших прикладів самооберненої функції. (uk) |
dbo:thumbnail | wiki-commons:Special:FilePath/Hyperbola_one_over_x.svg?width=300 |
dbo:wikiPageID | 229940 (xsd:integer) |
dbo:wikiPageLength | 14970 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1119810415 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Calculus dbr:Bit_shift dbr:Derivative dbr:Determinant dbr:Algebra_(ring_theory) dbr:Algorithm dbc:Elementary_special_functions dbr:List_of_sums_of_reciprocals dbr:Repeating_decimal dbr:Inverse_distribution dbr:Number dbr:Power_rule dbr:0_(number) dbr:Complex_logarithm dbr:Complex_number dbr:Cosecant dbr:Mathematics dbr:Safe_prime dbr:Encyclopædia_Britannica dbr:French_language dbr:Function_(mathematics) dbr:Global_optimum dbr:Golden_ratio dbr:Modular_arithmetic dbr:Modular_multiplicative_inverse dbr:Multiplication dbr:Multiplicative_identity dbr:Long_division dbr:Complex_conjugate dbr:Zero_divisor dbc:Multiplication dbc:Elementary_algebra dbr:Trigonometric_functions dbr:Division_algebra dbr:Division_algorithm dbr:Irrational_number dbr:Square_matrix dbr:Absolute_value dbr:Additive_inverse dbr:E_(mathematical_constant) dbr:Euclid dbr:Euclid's_Elements dbr:Exponential_decay dbr:Extended_Euclidean_algorithm dbr:Field_(mathematics) dbr:Finite_set dbr:Fraction_(mathematics) dbc:Unary_operations dbr:Cavalieri's_quadrature_formula dbr:Fractional_part dbr:Ring_(mathematics) dbr:Group_(mathematics) dbr:Inverse_element dbr:Inverse_function dbr:Inverse_trigonometric_functions dbr:Invertible_matrix dbr:Involution_(mathematics) dbr:Hyperbola dbr:Surjective dbc:Abstract_algebra dbr:Zero_of_a_function dbr:Six-sphere_coordinates dbr:Division_(mathematics) dbr:Division_by_zero dbr:Division_ring dbr:Coprime dbr:If_and_only_if dbr:Imaginary_unit dbr:Integer dbr:Natural_logarithm dbr:Newton's_method dbr:Rational_number dbr:Real_number dbr:Magnitude_(mathematics) dbr:Unit_fraction dbr:Injective dbr:Sedenion dbr:Pseudo-random_numbers dbr:Constructive_mathematics dbr:File:Hyperbola_one_over_x.svg dbr:File:Reciprocal_integral.svg dbr:File:X_to_x_power_showing_minimum.svg dbr:W:fr:Bijection_réciproque |
dbp:wikiPageUsesTemplate | dbt:Math dbt:Short_description dbt:Distinguish-redirect |
dcterms:subject | dbc:Elementary_special_functions dbc:Multiplication dbc:Elementary_algebra dbc:Unary_operations dbc:Abstract_algebra |
gold:hypernym | dbr:Number |
rdf:type | owl:Thing |
rdfs:comment | في الرياضيات، مقلوب عدد أو معكوس ضربي (بالإنجليزية: Reciprocal أو Multiplicative inverse) هو العدد الذي إذا ضُرب بالعدد الأصلي يعطي القيمة 1، العنصر المحايد بالنسبة إلى عملية الضرب. يرمز لمقلوب العدد x بالرمز 1x أو x −1. مقلوب العدد هو . على سبيل المثال، مقلوب 5 هو 1/5. (ar) En matemàtiques, l'invers multiplicatiu, recíproc o simplement invers d'un nombre x, expressat com ¹⁄x o x −1, és un nombre que multiplicat per x dona com a resultat 1. L'invers d'una fracció a⁄b és b⁄a. L'invers d'un nombre real consisteix a dividir 1 entre el nombre en qüestió. Per exemple, el recíproc de 5 és un cinquè (¹⁄₅ o 0,2), i el recíproc de 0,25 és 4 (1 dividit per 0,25). (ca) Στα μαθηματικά, ο πολλαπλασιαστικός αντίστροφος ενός αριθμού , συμβολίζεται με ή , και είναι ένας αριθμός που όταν πολλαπλασιαστεί επί δίνει αποτέλεσμα το ουδέτερο στοιχείο του πολλαπλασιασμού, δηλαδή τη μονάδα, : . Ο πολλαπλασιαστικός αντίστροφος είναι μία ειδική περίπτωση του αντιστρόφου στοιχείου ενός συνόλου ως προς μία δυαδική πράξη . Σε έναν δακτύλιο (όπου υπάρχουν δύο πράξεις), ο πολλαπλασιαστικός αντίστροφος ενός στοιχείου αναφέρεται στον αντίστροφο ως προς την πράξη , ενώ ο αναφέρεται στον αντίστροφο ως προς την πράξη . (el) La inverso de nombro estas la rezulto de la divido de 1 per la nombro. Ekzemple: La inverso de du estas duono. En pli ĝenerala senco, la nocio inverso ankaŭ estas uzata en jenaj ekzemplaj frazoj: * La inverso de multiplikado estas dividado. * La inverso de derivaĵo estas malderivaĵo. * La inverso de funkcio estas ĝia (se ĝi ekzistas). * La inverso de pluvolvi la vidbendon estas retrovolvi ĝin. * La inversa elemento de a rilate al operacio • estas elemento a-1 tia ke a • a-1 = a-1 • a = e kie e estas la neŭtrala elemento. (eo) Der Kehrwert (auch der reziproke Wert oder das Reziproke) einer von verschiedenen Zahl ist in der Arithmetik diejenige Zahl, die mit multipliziert die Zahl ergibt; er wird als oder notiert. (de) Matematikan, x zenbaki baten alderantzizko zenbakia 1⁄x edo x −1 adierazitako beste zenbaki bat da, zeina bider x eginez gero 1 ematen duen. 0 zenbakiak ez du alderantzizko zenbakirik. Edozein zenbaki konplexuaren alderantzizko zenbakia zenbaki konplexua ere da. Edozein zenbaki errealen alderantzizko zenbakia zenbaki erreala ere da eta edozein zenbaki arrazionalena arrazionala ere. (eu) En mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x−1 ou 1/x. Par exemple, dans , l'inverse de 3 est , puisque . (fr) In matematica, con reciproco di un numero si indica il numero che moltiplicato per dia come risultato 1; e può essere indicato come (frazione unitaria) o anche . Generalmente quando si fa riferimento ai reciproci, si intendono soltanto i reciproci dei numeri interi: , ma in realtà è utilizzato anche per indicare il reciproco di un numero decimale, ad esempio il reciproco di è (it) 逆数(ぎゃくすう、英: reciprocal)とは、ある数に掛け算した結果が 1 となる数である。すなわち、数 x の逆数 y とは次のような関係を満たす。 通常、x の逆数は分数の記法を用いて 1/x のように表されるか、冪の記法を用いて x−1 のように表される。 1 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、英: multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、x と y の役割を入れ替えれば、x は y の逆数であると言える。従って、x の逆数が y であるとき y の逆数は x である。 x が 0 である場合、任意の数との積は 0 になるため、(0 ≠ 1 であれば)0 に対する逆数は存在しない。 また、任意の x について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は x = y = 1 以外には存在しない。0 を除く任意の数 x について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。 (ja) Liczba odwrotna do danej liczby to taka liczba że Jest to zgodne z ogólną definicją elementu odwrotnego mnożenia w algebrze, zapisywanego zwykle jako lub W liczbach rzeczywistych jest on określany przez funkcję homograficzną W arytmetyce modularnej również można określić element odwrotny modulo jeśli i są względnie pierwsze. Element taki można uzyskać korzystając z rozszerzonego algorytmu Euklidesa dla i Pozwala to określić działanie dzielenia w dla pierwszych (i częściowo dla innych ) jako mnożenie przez odwrotność. (pl) 數學上,一个数的倒数(英語:reciprocal),是指一個与相乘的积为1的数,记为或。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 一个非零的复数(实数)的倒数定义为使得成立的复数(实数),记作例如,的倒数是,因为 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆,或者在环中,元素3和18也沒有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为。 (zh) Обра́тное число́ (обратное значение, обратная величина) к данному числу x — это число, умножение которого на x даёт единицу. Принятая запись: или . Два числа, произведение которых равно 1, называются взаимно обратными. Примеры. Единственные вещественные числа, совпадающие со своими обратными: и Обратное для числа 2 равно Обратное для числа равно Обратное для числа равно Обратное число не следует путать с противоположным или с обратной функцией. Понятие обратного элемента можно определить не только для чисел, но и для других математических объектов. (ru) Обернене число для x, позначається 1/x або x−1, це число, добуток якого з x породжує одиницю. Оберненим дробу a/b буде b/a. Для отримання оберненого для дійсного числа треба розділити 1 на число. Наприклад, обернене для 5 є 1/5, а для 0.25 це 1 розділений на 0.25, або 4. Функція f(x), яка відображає x в 1/x, це один з найпростіших прикладів самооберненої функції. (uk) V matematice se jako převrácená (neboli reciproká) hodnota čísla x označuje to číslo, které po vynásobení číslem x dává jako výsledek 1. Převrácená hodnota čísla x se označuje jako nebo . Platí tedy, že . Převrácenou hodnotu komplexního čísla v algebraickém tvaru lze vyjádřit jako , v goniometrickém tvaru V abstraktní algebře je převrácená hodnota označována jako inverzní prvek vzhledem k násobení, jedná se o speciální případ inverzního prvku. (cs) En matemáticas, el inverso multiplicativo, recíproco o inverso de un número x no nulo, es el número, denotado como 1⁄x o x −1, que multiplicado por x da 1 como resultado. En los números reales el 0 no tiene inverso multiplicativo. El inverso de un número real también es real, el inverso de un número racional es racional y todo número complejo tiene un inverso que es un número complejo.La división es la operación inversa de la multiplicación, si por definición se cumple que: , y además . Es decir: (es) In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution). (en) Dalam matematika, invers perkalian atau timbal balik untuk bilangan x, dilambangkan dengan 1/x atau x−1, adalah bilangan yang ketika dikalikan dengan x menghasilkan , 1. Pembalikan perkalian dari sebuah pecahan a/b adalah b/a. Untuk pembalikan perkalian bilangan real, bagilah 1 dengan bilangan tersebut. Misalnya, kebalikan dari 5 adalah seperlima (1/5 atau 0,2), dan kebalikan dari 0,25 adalah 1 dibagi 0,25, atau 4. Fungsi invers, fungsi f(x) dengan peta x untuk 1/x, adalah salah satu contoh paling sederhana dari suatu fungsi yang merupakan kebalikannya sendiri (sebuah ). (in) 수학에서, 어떤 수의 곱셈 역원(-逆元, 영어: multiplicative inverse) 또는 역수(逆數, 영어: reciprocal)는 그 수와 곱하면 곱셈 항등원(1)이 되는 수를 말한다. 두 수의 곱이 1이 될 때, 한 수를 다른 수의 역수라고 한다. 의 곱셈 역원은 와 같이 표기하거나 와 같이 쓸 수 있다. 곱하여 1이 되는 두 수를 '서로 곱셈 역원'이라 하기도 하는데, 이는 곱셈 역원 관계가 대칭 관계이기 때문에 가능한 표현이다. 즉, 만약 가 의 곱셈 역원이라면, 역시 의 곱셈 역원이다. 예를 들어, 유리수 의 곱셈 역원은 이다. 실수 의 곱셈 역원은 이며, 복소수 의 곱셈 역원은 이다. 보다 일반적으로, 유리수 의 곱셈 역원은 항상 이며, 복소수 의 곱셈 역원은 항상 이다. 0이 아닌 복소수의 곱셈 역원은 항상 존재하며, 또한 항상 유일하다. 그러나 0은 곱셈 역원을 가질 수 없는데, 이는 0에 아무런 수를 곱하여도 0이 되기 때문이다. 각 실수를 그 곱셈 역원으로 대응시키는 함수 는 의 예이다. 이러한 이름은 변숫값과 함숫값이 반비례 관계를 이룬다는 데에서 왔다. (ko) Em matemática, o inverso multiplicativo de um número x é o número y que, multiplicado por x, gera a identidade multiplicativa. Note-se que estamos falando de qualquer operação binária que tenha o nome de multiplicação, que não precisa ser comutativa, mas deve ter elemento neutro. No caso de uma operação não comutativa, o inverso deve ser tal que . Quando este inverso é único (por exemplo, o inverso multiplicativo de um número real), ele é representado por: ou ou (pt) Het omgekeerde (ook: de omgekeerde) of de reciproque (vaak geschreven als 'reciproke') van een getal of grootheid is 1 gedeeld door dat getal of die grootheid. De omgekeerde van een breuk ontstaat door teller en noemer te verwisselen. * Het omgekeerde van 7 is 1/7 en het omgekeerde van 2/3 is 3/2. * Het product van twee getallen die elkaars omgekeerde zijn, is gelijk aan 1. Enkele SI-eenheden zijn het omgekeerde van andere eenheden: (nl) Ett reciprokt tal, reciprokt värde, reciprok funktion är en matematisk benämning för den multiplikativa inversen av ett tal x eller funktion f(x), det vill säga det tal x-1 = 1/x sådant att x⋅x-1 = 1, eller den funktion f(x)-1 = 1/f(x) sådan att f(x)⋅ f(x)-1 = 1. Observera att f(x) -1 = 1/f(x) ej ska förväxlas med f -1(x) som är den inversa funktionen sådan att f(x) = y och f -1(y) = x. (sv) |
rdfs:label | مقلوب عدد (ar) Invers multiplicatiu (ca) Převrácená hodnota (cs) Kehrwert (de) Πολλαπλασιαστικός αντίστροφος (el) Inverso (eo) Alderantzizko zenbaki (eu) Inverso multiplicativo (es) Inverse (fr) Invers perkalian (in) Reciproco (it) 逆数 (ja) 곱셈 역원 (ko) Multiplicative inverse (en) Liczba odwrotna (pl) Omgekeerde (nl) Inverso multiplicativo (pt) Reciprok (matematik) (sv) Обратное число (ru) Обернене число (uk) 倒数 (zh) |
owl:differentFrom | dbr:Reciprocation_(geometry) |
owl:sameAs | freebase:Multiplicative inverse wikidata:Multiplicative inverse dbpedia-af:Multiplicative inverse dbpedia-ar:Multiplicative inverse http://ast.dbpedia.org/resource/Inversu_multiplicativu dbpedia-bg:Multiplicative inverse dbpedia-ca:Multiplicative inverse dbpedia-cs:Multiplicative inverse http://cv.dbpedia.org/resource/Кутăнла_хисеп dbpedia-cy:Multiplicative inverse dbpedia-da:Multiplicative inverse dbpedia-de:Multiplicative inverse dbpedia-el:Multiplicative inverse dbpedia-eo:Multiplicative inverse dbpedia-es:Multiplicative inverse dbpedia-eu:Multiplicative inverse dbpedia-fa:Multiplicative inverse dbpedia-fi:Multiplicative inverse dbpedia-fr:Multiplicative inverse dbpedia-he:Multiplicative inverse dbpedia-hu:Multiplicative inverse dbpedia-id:Multiplicative inverse dbpedia-is:Multiplicative inverse dbpedia-it:Multiplicative inverse dbpedia-ja:Multiplicative inverse dbpedia-ko:Multiplicative inverse dbpedia-lmo:Multiplicative inverse dbpedia-mk:Multiplicative inverse dbpedia-ms:Multiplicative inverse dbpedia-nds:Multiplicative inverse dbpedia-nl:Multiplicative inverse dbpedia-nn:Multiplicative inverse http://pa.dbpedia.org/resource/ਗੁਣਾਤਮਕ_ਉਲਟ dbpedia-pl:Multiplicative inverse dbpedia-pt:Multiplicative inverse http://qu.dbpedia.org/resource/T'ikrasqa_yupay dbpedia-ru:Multiplicative inverse dbpedia-simple:Multiplicative inverse dbpedia-sl:Multiplicative inverse dbpedia-sr:Multiplicative inverse dbpedia-sv:Multiplicative inverse http://ta.dbpedia.org/resource/பெருக்கல்_நேர்மாறு dbpedia-th:Multiplicative inverse http://tl.dbpedia.org/resource/Kabaligtarang_pamparami dbpedia-uk:Multiplicative inverse http://ur.dbpedia.org/resource/ریاضیاتی_مقلوب dbpedia-vi:Multiplicative inverse dbpedia-zh:Multiplicative inverse https://global.dbpedia.org/id/23yvg |
prov:wasDerivedFrom | wikipedia-en:Multiplicative_inverse?oldid=1119810415&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Hyperbola_one_over_x.svg wiki-commons:Special:FilePath/Reciprocal_integral.svg wiki-commons:Special:FilePath/X_to_x_power_showing_minimum.svg |
foaf:isPrimaryTopicOf | wikipedia-en:Multiplicative_inverse |
is dbo:wikiPageDisambiguates of | dbr:Multiplicative dbr:Inverse |
is dbo:wikiPageRedirects of | dbr:Reciprocal_(mathematics) dbr:⅟ dbr:Arithmetic_inverse dbr:Reciproc dbr:Reciprocal_function dbr:Reciprocal_value dbr:1/x dbr:X^-1 |
is dbo:wikiPageWikiLink of | dbr:Casio_calculator_character_sets dbr:Casio_fx-7000G dbr:Behrend_sequence dbr:Projectively_extended_real_line dbr:Proportionality_(mathematics) dbr:Quadratic_integer dbr:Quadratic_irrational_number dbr:Quake_III_Arena dbr:Quaternion dbr:Quaternionic_analysis dbr:Quaternions_and_spatial_rotation dbr:Root_of_unity dbr:Rounding dbr:Scale_(map) dbr:Elastance dbr:Electrical_conductor dbr:Energy_efficiency_in_transport dbr:Entropy_estimation dbr:Enzyme_kinetics dbr:List_of_abstract_algebra_topics dbr:List_of_algorithms dbr:List_of_countries_by_dependency_ratio dbr:Multiplicative dbr:Myopia dbr:Menger_curvature dbr:Monopoly_price dbr:Projective_line_over_a_ring dbr:Basel_problem dbr:Benford's_law dbr:Binary_search_algorithm dbr:Bounding_volume dbr:Decibel dbr:Derivative dbr:Dessin_d'enfant dbr:Determination_of_equilibrium_constants dbr:Holomorphic_function dbr:Homomorphism dbr:Hyperboloid dbr:Beta_distribution dbr:List_of_mathematical_symbols_by_subject dbr:List_of_numbers dbr:List_of_sums_of_reciprocals dbr:List_of_trigonometric_identities dbr:Path_integral_formulation dbr:Pentatope_number dbr:Performance_and_modelling_of_AC_transmission dbr:Regula_falsi dbr:Regular_number dbr:Residue_number_system dbr:Reversible_cellular_automaton dbr:Rijndael_S-box dbr:Current–voltage_characteristic dbr:Cycles_per_instruction dbr:Unit_(ring_theory) dbr:Van_'t_Hoff_equation dbr:Vector_space dbr:Viscosity dbr:Visual_acuity dbr:Decagon dbr:Decathlon_scoring_tables dbr:Degree_of_a_polynomial dbr:Dupin_cyclide dbr:Incremental_capital-output_ratio dbr:Index_group dbr:Infinite_divisibility_(probability) dbr:Infrared_spectroscopy dbr:Input_impedance dbr:Instructions_per_cycle dbr:Intensive_and_extensive_properties dbr:Interval_ratio dbr:Inverse-chi-squared_distribution dbr:Inverse-gamma_distribution dbr:Inverse_distribution dbr:Inverse_function_rule dbr:Inverse_second dbr:Inversive_geometry dbr:Lens dbr:Plimpton_322 dbr:Lill's_method dbr:List_of_group_theory_topics dbr:List_of_numerical_analysis_topics dbr:Inverse dbr:Inversion dbr:Positive_real_numbers dbr:Superparticular_ratio dbr:Zero-forcing_equalizer dbr:Zeros_and_poles dbr:0 dbr:133_(number) dbr:151_(number) dbr:Complex_number dbr:Compliance_(physiology) dbr:Continued_fraction dbr:Coulomb dbr:Analytic_function dbr:Analytic_hierarchy_process_–_leader_example dbr:Mass-to-charge_ratio dbr:Matrix_multiplication dbr:Running dbr:Chen_prime dbr:Child_sex_ratio dbr:Gas dbr:Gc_(engineering) dbr:Generalized_linear_model dbr:Geometric–harmonic_mean dbr:Newton's_theorem_of_revolving_orbits dbr:Odds dbr:Ohm dbr:Specific_volume dbr:U.S._Dollar_Index dbr:Sum-free_sequence dbr:Science_of_value dbr:Egyptian_fraction dbr:Electrical_impedance dbr:Electrical_resistance_and_conductance dbr:Emmy_Noether dbr:Frequency dbr:Gauge_(firearms) dbr:Gaussian_integer dbr:Generating_function dbr:George_Peacock dbr:Glossary_of_engineering:_A–L dbr:Glossary_of_engineering:_M–Z dbr:Glucocorticoid_remediable_aldosteronism dbr:Minute_and_second_of_arc dbr:Modular_multiplicative_inverse dbr:Money_multiplier dbr:Moritz_Ludwig_Frankenheim dbr:Multiplication dbr:Conway's_Soldiers dbr:Correspondence_analysis dbr:Cross-ratio dbr:Millionth dbr:Near-field_(mathematics) dbr:Wheel_theory dbr:Reciprocal_(mathematics) dbr:Apéry's_constant dbr:Arity dbr:Bernoulli_trial dbr:Lemniscate_constant dbr:Lemniscate_elliptic_functions dbr:Leonhard_Euler dbr:Linear_algebra dbr:Linear_differential_equation dbr:Localization_(commutative_algebra) dbr:Similarity_(geometry) dbr:Sinclair_Executive dbr:Sinclair_Sovereign dbr:Sine_and_cosine dbr:Singular_value_decomposition dbr:Slide_rule_scale dbr:Stiffness dbr:Stokes's_law_of_sound_attenuation dbr:Closeness_centrality dbr:Complex_conjugate dbr:Composition_algebra dbr:Z-buffering dbr:Zero_ring dbr:Feed_conversion_ratio dbr:Harmonic_progression_(mathematics) dbr:Identity_element dbr:Percentage_point dbr:Perfect_number dbr:Pitch_(music) dbr:Pulse_repetition_frequency dbr:Mahler_volume dbr:Subtraction dbr:Matrix_field dbr:Random_binary_tree dbr:Babylonian_mathematics dbr:6-sphere_coordinates dbr:Admittance dbr:Central_tendency dbr:Triangular_number dbr:Trigonometric_functions dbr:Trigonometry dbr:Wieferich_prime dbr:William_Shanks dbr:Dissociation_constant dbr:Division_algorithm dbr:Cos-1 dbr:Cot-1 dbr:Csc-1 dbr:Latin_American_debt_crisis dbr:Linear_equation_over_a_ring dbr:Linear_fractional_transformation dbr:Mired dbr:2 dbr:3 dbr:AVX-512 dbr:Absolute_value dbr:Additive_inverse dbr:Advanced_Encryption_Standard dbr:Algebraic_integer dbr:1X dbr:271_(number) dbr:281_(number) dbr:Curvature dbr:Data_transformation_(statistics) dbr:Duodecimal dbr:Euler's_totient_function dbr:Exponential_decay dbr:Exponentiation dbr:Extended_Euclidean_algorithm dbr:Far_point dbr:Fast_inverse_square_root dbr:Felix_Behrend dbr:Field_(mathematics) dbr:Fine-structure_constant dbr:Finite_field dbr:Four_fours dbr:Fraction dbr:Angular_frequency dbr:Band-pass_filter dbr:Bretton_Woods_system dbr:Noncommutative_ring dbr:Normal_distribution dbr:Normalizing_constant dbr:Otonality_and_Utonality dbr:Parallel_(operator) dbr:Parsec dbr:Partition_(number_theory) dbr:Partition_function_(number_theory) dbr:Capital_adequacy_ratio dbr:Centered_polygonal_number dbr:Centrality dbr:Die_casting dbr:Differential_(mathematics) dbr:Dioptre dbr:Direct_product dbr:Dirichlet's_theorem_on_arithmetic_progressions dbr:Focal_length dbr:Focal_surface dbr:Foreign_exchange_market dbr:Four-vertex_theorem dbr:Golden_triangle_(mathematics) dbr:Grain_boundary dbr:History_of_logarithms dbr:History_of_mathematical_notation dbr:History_of_mathematics dbr:Isolated_singularity dbr:Knot_density dbr:Leibniz_harmonic_triangle dbr:Primitive_part_and_content dbr:Series_and_parallel_circuits dbr:List_of_Egyptian_inventions_and_discoveries dbr:Species_diversity dbr:List_of_things_named_after_Carl_Friedrich_Gauss dbr:Photographic_filter dbr:Optical_power dbr:Power_usage_effectiveness dbr:Precision_(statistics) dbr:Proximity_effect_(audio) dbr:Reciprocal dbr:Reciprocal_length dbr:Reciprocation dbr:Recurrence_quantification_analysis dbr:Relation_algebra dbr:Resonance_(particle_physics) dbr:Ring_(mathematics) dbr:Thermal_resistance dbr:HP-16C dbr:Harmonic_mean dbr:Harmonic_number dbr:Heat_transfer_coefficient dbr:Hertz dbr:Interval_(mathematics) dbr:Inverse-square_law dbr:Inverse_element dbr:Inverse_function dbr:Inverse_trigonometric_functions dbr:Invertible_matrix dbr:Involution_(mathematics) dbr:James_A._D._W._Anderson dbr:Backhouse's_constant dbr:Backup_rotation_scheme dbr:Taylor_series dbr:Cramér–Rao_bound dbr:Hundredth dbr:Hyperbola dbr:Hyperbolic_absolute_risk_aversion dbr:Hyperbolic_orthogonality dbr:Hyperreal_number dbr:Marginal_product_of_capital dbr:Prime_number dbr:Riemann_sphere dbr:Smith_chart dbr:Arithmetic dbr:APL_syntax_and_symbols dbr:Aerial_perspective dbr:Aldosterone-to-renin_ratio dbr:Large_numbers dbr:Law_of_sines dbr:Biotic_potential dbr:Supergolden_ratio dbr:Susceptance dbr:Symmetric_level-index_arithmetic dbr:TI_calculator_character_sets dbr:Coefficient_of_variation dbr:Coherence_(units_of_measurement) |
is owl:differentFrom of | dbr:Inverse_function |
is foaf:primaryTopic of | wikipedia-en:Multiplicative_inverse |